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Our LUT Technique

Uses mullut a 128 kbyte LookUp Table
Calculates output one byte/one word at a time instead

of first calculating partial products and then adding
them

Two versions
B-LUT: generates output one byte at a time
F-LUT: generates output one word (32-bits) at a time
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The LookUp Table (LUT)

The algorithm precomputes the product of all polynomials up to
degree 7 with coefficients in GF(2).
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Multiplication using
mullut[256][256]
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Ai and Bi are 8-bit values
8 8 multiplication 16 16 multiplication

C0C1

C0 = A0B0 & 0xFF
C1 = (A0B0 8) & 0xFF

C0 = A0B0 & 0xFF
C1 = ((A0B0 8) &0xFF)(A0B1& 0xFF)(A1B0 & 0xFF)
C2 = ((A0B1≫8) &0xFF)((A1B0≫8) & 0xFF)(A1B1& 0xFF)
C3 = (A1B1≫8) & 0xFF
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32 × 32 multiplication using
mullut[256][256]
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Ai and Bi are 8-bit values

Shaded portions indicate
something that effects
neighbours

Each Ci depends on Ai and Bi whose
indices add up to i

Effects of processing in
word-size is that bytes
of the boundaries of
words have to result in
some sort of “carry”
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The Pattern Emerges

C0 = A0B0 & 0xFF

C1 = ((A0B0 8) &0xFF) (A0B1& 0xFF) (A1B0 & 0xFF)

C2 = ((A0B1≫8) &0xFF) ((A1B0≫8) & 0xFF) (A0B2& 0xFF) (A1B1& 0xFF) (A2B0& 0xFF)

C3 = ((A0B2& 0xFF)≫8) ((A1B1& 0xFF)≫8) ((A2B0& 0xFF))≫8) (A0B3& 0xFF)
(A1B2& 0xFF) (A2B1& 0xFF) (A3B0& 0xFF)

C4 = ((A0B3 ≫8) & 0xFF) ((A1B2≫8) & 0xFF) ((A2B1≫8) & 0xFF) ((A3B0≫8) & 0xFF)
(A1B3& 0xFF) (A2B2& 0xFF) (A3B1& 0xFF)

C5 = ((A1B3≫8) & 0xFF) ((A2B2 ≫8) & 0xFF) ((A3B1≫8) & 0xFF)
(A2B3& 0xFF) (A3B2& 0xFF)

C6 = ((A2B3≫8) & 0xFF) (A3B2≫8)& 0xFF) (A3B3& 0xFF)

C7 = (A3B3≫8) & 0xFF
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B-LUT

We process 8 bits of the
inputs at a time.
The number of 8-bit units
present in the inputs a and b is
given as d.
Output c before reduction
would consist of 2·d bytes.
Each byte of the output is
calculated by performing
lookups into the table mullut
and adding (XOR) looked up
values after they have been
shifted by necessary amounts.
The symbol & represents the
bit-wise AND operation.
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GF(216) Multiply Using mullut
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F-LUT
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Comparison with Other Techniques
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Multiplier Performance Data
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Impact on ECC Performance
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Conclusions and Future Work

We presented:
Two new algorithms for GF(2m) multiplication using Lookup

Table and results of an implementation of the new LUT
based finite field multiplication techniques.

We provided the results of our ECC implementation showing
performance impact of our new GF(2m) multiplication
technique.

 Future ideas:
Combine Karatsuba’s algorithm with our LUT based

technique to cut down the base number of XORs, Shifts and
Table Lookups.

We also intend to explore more efficient EC scalar
multiplication techniques and use of our multiplication
technique for HECC.


