
11A New Multiplication Technique for GF(2m) with Cryptographic Significance

Our LUT Technique

Uses mullut a 128 kbyte LookUp Table
Calculates output one byte/one word at a time instead

of first calculating partial products and then adding
them

Two versions
B-LUT: generates output one byte at a time
F-LUT: generates output one word (32-bits) at a time



12A New Multiplication Technique for GF(2m) with Cryptographic Significance

The LookUp Table (LUT)

The algorithm precomputes the product of all polynomials up to
degree 7 with coefficients in GF(2).



13A New Multiplication Technique for GF(2m) with Cryptographic Significance

Multiplication using
mullut[256][256]

A0

B0

A0

B0

A1

B1

A0B0 A0B0

A0B1

A1B0

A1B1

C0C1C2C3

Ai and Bi are 8-bit values
8 8 multiplication 16 16 multiplication

C0C1

C0 = A0B0 & 0xFF
C1 = (A0B0 8) & 0xFF

C0 = A0B0 & 0xFF
C1 = ((A0B0 8) &0xFF)(A0B1& 0xFF)(A1B0 & 0xFF)
C2 = ((A0B1≫8) &0xFF)((A1B0≫8) & 0xFF)(A1B1& 0xFF)
C3 = (A1B1≫8) & 0xFF



14A New Multiplication Technique for GF(2m) with Cryptographic Significance

32 × 32 multiplication using
mullut[256][256]

A0

B0

A1

B1

A0B0
A0B1
A1B0

A0B2

C0C1C2C3

A2

B2

A3

B3

C4C5C6C7

A1B1

A2B0

A0B3
A1B2
A2B1

A3B0
A1B3
A2B2
A3B1

A2B3
A3B2

A3B3

Ai and Bi are 8-bit values

Shaded portions indicate
something that effects
neighbours

Each Ci depends on Ai and Bi whose
indices add up to i

Effects of processing in
word-size is that bytes
of the boundaries of
words have to result in
some sort of “carry”



15A New Multiplication Technique for GF(2m) with Cryptographic Significance

The Pattern Emerges

C0 = A0B0 & 0xFF

C1 = ((A0B0 8) &0xFF) (A0B1& 0xFF) (A1B0 & 0xFF)

C2 = ((A0B1≫8) &0xFF) ((A1B0≫8) & 0xFF) (A0B2& 0xFF) (A1B1& 0xFF) (A2B0& 0xFF)

C3 = ((A0B2& 0xFF)≫8) ((A1B1& 0xFF)≫8) ((A2B0& 0xFF))≫8) (A0B3& 0xFF)
(A1B2& 0xFF) (A2B1& 0xFF) (A3B0& 0xFF)

C4 = ((A0B3 ≫8) & 0xFF) ((A1B2≫8) & 0xFF) ((A2B1≫8) & 0xFF) ((A3B0≫8) & 0xFF)
(A1B3& 0xFF) (A2B2& 0xFF) (A3B1& 0xFF)

C5 = ((A1B3≫8) & 0xFF) ((A2B2 ≫8) & 0xFF) ((A3B1≫8) & 0xFF)
(A2B3& 0xFF) (A3B2& 0xFF)

C6 = ((A2B3≫8) & 0xFF) (A3B2≫8)& 0xFF) (A3B3& 0xFF)

C7 = (A3B3≫8) & 0xFF



16A New Multiplication Technique for GF(2m) with Cryptographic Significance

B-LUT

We process 8 bits of the
inputs at a time.
The number of 8-bit units
present in the inputs a and b is
given as d.
Output c before reduction
would consist of 2·d bytes.
Each byte of the output is
calculated by performing
lookups into the table mullut
and adding (XOR) looked up
values after they have been
shifted by necessary amounts.
The symbol & represents the
bit-wise AND operation.



17A New Multiplication Technique for GF(2m) with Cryptographic Significance

GF(216) Multiply Using mullut



18A New Multiplication Technique for GF(2m) with Cryptographic Significance

F-LUT



19A New Multiplication Technique for GF(2m) with Cryptographic Significance

Comparison with Other Techniques



20A New Multiplication Technique for GF(2m) with Cryptographic Significance

Multiplier Performance Data



21A New Multiplication Technique for GF(2m) with Cryptographic Significance

Impact on ECC Performance



22A New Multiplication Technique for GF(2m) with Cryptographic Significance

Conclusions and Future Work

We presented:
Two new algorithms for GF(2m) multiplication using Lookup

Table and results of an implementation of the new LUT
based finite field multiplication techniques.

We provided the results of our ECC implementation showing
performance impact of our new GF(2m) multiplication
technique.

 Future ideas:
Combine Karatsuba’s algorithm with our LUT based

technique to cut down the base number of XORs, Shifts and
Table Lookups.

We also intend to explore more efficient EC scalar
multiplication techniques and use of our multiplication
technique for HECC.


