MBasic

Version 1.8

USER'S GUIDE

Written by Franck Charlet.

1. Copyrights

2. Forewords

3. The language

Summary of available keywords
3.1

Variables usage
3.2

Datatypes
3.3

Numbers
3.3.1

Strings
3.3.2

Operators
3.4

Expressions
3.5

Statements
3.6

Program
3.7

Blanks
3.9

Error messages
3.9

4. Builtin functions

5. Builtin commands

Variables assignations
5.1

BEEP
5.2

BITCLR
5.3

BITINV
5.4

BITSET
5.5

CLS
5.6

COLOR
5.7

DIM
5.8

DOEVENTS
5.9

ELSE
5.10

END
5.11

END IF
5.12

EXIT FOR
5.13

FCLOSE
5.14

FCOPY
5.15

FKILL
5.16

FMKDIR
5.17

FNAME
5.18

FOR
5.19

FRMDIR
5.20

FSAVE
5.21

FSEEK
5.22

FWRITE
5.23

FWRITELN
5.24

GET
5.25

GOSUB
5.26

GOTO
5.27

HWAIT
5.28

IF
5.29

INPUT
5.30

LET
5.31

LOCATE
5.32

MCOPY
5.33

MFILL
5.34

MFREE
5.35

MROTATEL
5.36

MROTATER
5.37

MWRITE
5.38

MWRITED
5.39

MWRITEW
5.40

NEXT
5.41

POKED
5.42

POKEW
5.43

POKE
5.44

PRINT
5.45

REM
5.46

RETURN
5.47

SETCONTITLE
5.48

STOP
5.49

SWAP
5.50

SWAPGT
5.51

SWAPLW
5.52

VARTOINT
5.53

VARTOSTR
5.54

WAIT
5.55

WEND
5.56

WHILE
5.57

WINDOW
5.58

6. Sample programs

PITMAN
6.1

BENCHMARK
6.2

Test programs
6.3

1. Copyrights

Part of MBasic source-code and ALL other supplied files are

(2002-2003 Franck Charlet

Part of MBasic source-code and PITMAN.MBI program are

(2001 Sylvain Bizoirre
This program is FREEWARE and is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

MBasic and it's source-code is distributed as freeware but still remains the entire property of the authors. Complete or even partial re-use of the source-code or any files included with it for any kind of commercial or military purposes is not allowed.

2. Forewords

MBasic is a (big) improvement of Sylvain Bizoirre's Mini Basic, which was adapted from the original Li-Chen Wang's Palo Alto 8080 TINY BASIC
The TINY BASIC language was published in the pages of Dr. DOBB'S JOURNAL and PEOPLE'S COMPUTER COMPANY in late 1975 and early 1976.

The TINY BASIC language supported a very limited subset of the Dartmouth BASIC language and didn't supported strings. This manual uses some parts of original TINY BASIC documentation.

MBasic ?

MBasic isn't born to be exactly compatible with standard basics. The goal is (still) to remove the flaws and the archaic structures of the BASIC language, to obtain maximum programming flexibility while keeping both maximum speed and compacity.

It's been optimised for Intel PentiumTM microprocessors and Windows console environment. Other enhancements include the use of advanced maths functions, strings supports, file supports, extended subroutines and functions sets, and more...

Consider sending bugs, enhancements requests, beer, money or whatever to:

Franck Charlet (creator of MBasic):

hitchhikr@australia.edu
Sylvain Bizoirre (original creator of Mini Basic):
sb@retromatique.com
3. The language

 3.1. Summary of available Keywords

Operators (32):

+
-
/
\
%

MOD
*
=
<
>

<=
>=
<>
!=
AND

OR
|
XOR
EOR
SHL

SHR
<<
>>
ROR
ROL

IMP
EQV
NOR
NAND
NXOR

~
&

Subroutines (57):

BEEP
BITCLR
BITINV
BITSET
CLS

COLOR
DIM
DOEVENTS
ELSE
END

END IF
EXIT FOR
FCLOSE
FCOPY
FKILL

FMKDIR
FNAME
FOR
FRMDIR
FSAVE

FSEEK
FWRITE
FWRITELN
GET
GOSUB

GOTO
HWAIT
IF
INPUT
LET

LOCATE
MCOPY
MFILL
MFREE
MROTATEL

MROTATER
MWRITE
MWRITED
MWRITEW
NEXT

POKED
POKEW
POKE
PRINT
REM

RETURN
SETCONTITLE
STOP
SWAP
SWAPGT

SWAPLW
VARTOINT
VARTOSTR
WAIT
WEND

WHILE
WINDOW

Functions (127):

ABS
ACOS
ACOSEC
ACOTAN
ASC

ASEC
ASIN
ATN
BIN
BINB

BIND
BINW
BITCOUNT
BITTST
BSWAP

CARETX
CARETY
CHR
CINT
COS

COSEC
COTAN
CSTR
DATE
E

EXP
FALSE
FCLOSE
FCREATE
FEOF

FIX
FLEN
FLOAD
FLOC
FLOF

FOPENR
FOPENW
FRAC
FREAD
FSAVE

FSEEK
FWRITE
FWRITELN
GETCONTITLE
HACOS

HACOSEC
HASEC
HASIN
HATN
HCOATN

HCOS
HCOSEC
HCOTAN
HEX
HEXB

HEXD
HEXW
HIBYTE
HIWORD
HSEC

HSIN
HTAN
HTICKS
HWAIT
IIF

INKEY
INSTR
INT
ISDOUBLE
ISINTEGER

ISSTRING
LBOUND
LCASE
LEFT
LEN

LINE
LOBYTE
LOG
LOGN
LOWORD

LTRIM
LTRIM2
MALLOC
MFREE
MID

MREAD
MREADD
MREADW
NOT
NOW

PEEK
PEEKD
PEEKW
PI
RIGHT

RND
RTRIM
RTRIM2
SEC
SGN

SIN
SIZE
SIZEOF
SPACE
SQRT

STR
STRCMP
STRING
STRLINES
STRPAD

STRPADL
STRPADR
STRREVERSE
STRROTATEL
STRROTATER

STRSTOT
STRTTOS
TAN
TCASE
TICKS

TIME
TRIM
TRIM2
TRUE
UBOUND

UCASE
WSWAP

 3.2. Variables usage

Valid chars for variables and arrays names can be: a-z A-Z 0-9 _ and must begin with a letter. Maximum size is fixed to 64 chars.

Variables and arrays NEED to be declared before being used

(that makes MBasic a prototyped language).

Example:

DIM MYVAR:INTEGER

‘ Declare an integer variable.

DIM MYARRAY(128):STRING
‘ Declare an array of 128 strings.

Note:
AS keyword can also be used instead of ":" char.

Note:
So far, only single dimension arrays are handled and are zero indexed.

Note:
Variables and arrays names aren’t case sensitive (var1 = VAR1).

Note: Standard basic suffixes for variables don’t exist in MBasic.
Note:
Variables and array addresses can be obtained with & char prefix.
 3.3. Datatypes

Mbasic offers two type of datatypes to construct programs, these types are numbers and strings.

3.3.1. Numbers

In MBasic, numbers are 32 bits unsigned integers (range of 0 to 4 294 967 295) or standard floating points numbers (double precision). An integer number can be plain decimal (base 10), hexadecimal (base 16) (denoted with 0x prefix) or binary (base 2) (denoted with 0b prefix).

Example:

A=1234

' Decimal integer

A=12.34

' Floating point number

A=12.34E2

' Floating point number with exponent (1324)

A=.34E-2

' Floating point number with negative exponent (0.0034)

A=0XABCD

' Hexadecimal integer (43981)

A=0B0110101
' Binary integer (53)

Integer numbers can be declared as follows (all declarations have similar results) :

DIM ANUMBER AS INTEGER

DIM ANUMBER:INTEGER

DIM ANUMBER AS INT

DIM ANUMBER:INT

DIM ANUMBER AS LONG

DIM ANUMBER:LONG

DIM ANUMBER AS LNG

DIM ANUMBER:LNG

DIM ANUMBER AS DWORD

DIM ANUMBER:DWORD

Floating point numbers can be declared as follows (all declarations have similar results) :

DIM ANUMBER AS DOUBLE

DIM ANUMBER:DOUBLE

DIM ANUMBER AS DBL

DIM ANUMBER:DBL

Note:
Byte=8 bits

Word=16 bits

Dword=32 bits

3.3.2. Strings

- Strings in MBasic are regarded as Visual Basic non-sized strings.

(Sized strings doesn't exists in MBasic but can be emulated with memory

subroutines and functions).

- They can be of any length (up to 2 gigabytes) except literal strings

 (those that are hardcoded in a program) which memory is internally limited

 to 128kb.

- Variables and arrays can contains strings.

- + operator can be used to concatenate 2 strings together

 (conversions from numbers to strings are done automatically if necessary).

- Comparisons between strings (or variables containing strings) are allowed and are

 case sensitive.

Note:
Strings are stored internally with a null terminating char.

Example:

A = ”This “ + ”is”

B = ” string”

B = A + ” a” + B

‘ B now contains “This is a string”

Strings variables can be declared as follows (all declarations have similar results) :

DIM ASTRING AS STRING

DIM ASTRING:STRING

DIM ASTRING AS STR

DIM ASTRING:STR

 3.4. Operators

The following operators are supported (in order of precedence):

-
Unary minus
5

/
Floating point divide
4

\
Integer divide (fractional results not returned)

%
Integer remainder

MOD
Same as %

*
Integer multiply

-
Subtract
3

+
Addition

>
Compare if greater than
2

<
Compare if less than

=
Compare if equal to

<>
Compare if not equal to

>=
Compare if greater than or equal to

<=
Compare if less than or equal to

!=
Same as <>

AND
Logical AND
1

&
Same as AND

OR
Logical OR

|
Same as OR

XOR
Exclusive OR

EOR
Same as XOR

~
Same as XOR

SHR
Bits shift right (Logical)

SHL
Bits shift left (Logical)

<<
Same as SHL

>>
Same as SHR

ROR
Rotate right

ROL
Rotate left

IMP
Logical implication

EQV
Logical equivalence

NOR
NOT + OR

NAND
NOT + AND

NXOR
NOT + XOR

Note:
Multiple assignments are not supported, i.e., "A=B=0=0" is interpreted by MBasic as "compare the result of B=0 against 0 and store the result into A".

Note:
All comparisons operations returns 1 if TRUE and 0 if FALSE.

 3.5. Expressions

Expressions are formed with numbers, variables, and functions with arithmetics, logicals and comparisons operators between them. + and - signs can also be used at the beginning of any element (with the exception of strings).

The value of an expression is evaluated from left to right, except that the * / \ % operators are always given precedence, with + and -, then the comparisons operators and the logical operators coming last in that order.

Parentheses can be used to alter the order of the evaluation in the standard algebraic sense.

 3.6. Statements

A MBasic statement consists of an optional label followed by one or more subroutines (see Subroutines below).

A colon separates subroutines within the same statement (:).

If the "GOTO", "STOP", "END", and "RETURN" subroutines are used then they must be the last ones in that statement (for obvious reasons).

Note:
Valid chars for labels names are: a-z A-Z 0-9 _
they must begin with a letter and be followed by a colon (:).

 3.7. Programs

A MBasic program consists of one or more statements. After the given program is loaded, the execution begins immediately and sequencially (executing the first line then the second and so on).

The "GOTO", "GOSUB", "STOP", "END" and "RETURN" subroutines can alter that sequence. Within any statement the execution takes place from left to right.

The "IF", "IF THEN", "ELSE" and "END IF" subroutines can cause remaining subroutines within the same statement or complete block of subroutines to be skipped.

The "FOR", "NEXT", “WHILE” and “WEND” subroutines can cause a block of subroutines to be repeated.

 3.8. Blanks

MBasic statements and subroutines may use blanks freely, except that numbers, and keywords may not have embedded blanks and must clearly be separated.

 3.9. Error messages

There are 69 possible error messages in MBasic. When an error is encountered the cause message is printed, also mentioning the line number where it occurred (not in direct mode). Control is then passed to the editor.

List of possible errors:

Syntax error

Invalid Line number

Numeric value overflow

Subscript out of array range

Out of memory

TO expected after FOR statement

Division by zero

Unexpected variable type

Keyword or variable expected

'=' statement expected

Label not found

Available GOSUB levels exhausted

RETURN without GOSUB

Duplicate FOR..NEXT variable

Available FOR..NEXT levels exhausted

NEXT without FOR

NEXT variable doesn't match corresponding FOR

',' statement expected

Invalid argument

Variable expected

File not found

File too large

Not a MBasic file

Label already defined

End of line expected

Invalid floating-point number

Expressions stack space exhausted

Error in expression

Integer value expected

Illegal char found

'(' statement expected

')' statement expected

Ifs stack space exhausted

Unexpected statement

Unexpected end of file

Even value expected
'"' statement expected

Argument expected

Variable or array address expected

Invalid use of address reference

Invalid index reference

Datas memory overflow

No argument allowed

Strings table space exhausted

Numeric value expected

String expected

Not enough memory available for operation

Positive value expected

Integer value or string expected

Invalid reference to floating point variable

Variable name too long

Symbols table space exhausted

Illegal use of reserved symbol

Symbol already defined

':' or 'AS' statements expected

Unknown type in declaration

Illegal array size

Type mismatch

Unknown symbol

Array index out of bounds

Variables must be of the same type

Wrong variable type

Array expected

Available WHILE..WEND levels exhausted

WEND without WHILE

EXIT FOR without FOR

Illegal use of label name

Illegal label name

Integer value or floating point expected

Invalid line number

4. Builtin functions

ABS(X)

Return the absolute value of expression X.

ACOS(X)

Return the arc cosine of expression X.

ACOSEC(X)

Return the arc cosecant of expression X.

ACOTAN(X)

Return the arc cotangent of expression X.

ASC(X)

Return the integer value of the first char of a string.

ASEC(X)

Return the arc secant of expression X.

ASIN(X)

Return the arc sine of expression X.

ATN(X)

Return the arc tangent of expression X.

BIN(X)

Return a binary string representation of a numeric expression X.

Note:
Any floating-point expression is converted into integer.

BINB(X)

Return a binary string representation (0 padded) of an 8 bits numeric expression X.

Note:
Any floating-point expression is converted into integer.

BIND(X)

Return a binary string representation (0 padded) of a 32 bits numeric expression X.

Note:
Any floating-point expression is converted into integer.

BINW(X)

Return a binary string representation (0 padded) of a 16 bits numeric expression X.

Note:
Any floating-point expression is converted into an integer one.

BITCOUNT(X)

Return the number of bits set in integer expression X.

BITTST(X,Y)

Test bit specified by integer expression Y (0 to 31 range) with integer expression X and return the value of it (TRUE or FALSE).

BSWAP(X)

Return 32 bits numeric expression X with all bytes swapped.

CARETX()

Return the current X position of the caret.

CARETY()

Return the current Y position of the caret.

CHR(X)

Return the ASCII value of expression X (integer).

CINT(X)

Return expression X as an integer (no datas conversion performed).

COS(X)

Return the cosine of expression X.

COSEC(X)

Return the cosecant of expression X.

COTAN(X)

Return the cotangent of expression X.

CSTR(X)

Return expression X as a string (no datas conversion performed).

DATE()

Return the current system date as a string.

E()

Return an approximation of e (2.7182818284590452).

EXP(X)

Return e^X.

FALSE()

Return the value 0.

FCLOSE(X)

Close an opened file, return 0 if any error occurred.

FCREATE(X)

Create a new file X opened for writing purposes and return a handle or -1.

This following example shows how to create a new filename named blahblah located on c:\ and write the string contained in variable A into it.

DIM A:STRING:DIM B:INTEGER

A="test of string"

B=FCREATE("c:\test.txt")

IF B=0 END

C=FWRITELN(B,A,LEN(A))

IF C!=LEN(A)+2 ? "Error while writing into file!"

FCLOSE B

Note:
FCREATE erases any existing file under the same given name, having used FOPENW in the above example would have only happened the content of the A variable into the file.

FEOF(X)

Return 1 (TRUE) if end of an opened file X has been reached 0 (FALSE) otherwise.

FIX(X)

Return the integer part of expression X.

FLEN(X)

Return the size of file X (return –1 if an error occured).

FLOAD(X)

Load a file X into memory and return it's address or 0

(Return –1 if file isn't accessible).

Note:
FLOAD will report 0 and will not allocate any memory if it can't read the complete specified file.

Note:
MFREE() must be used with the return value of FLOAD() to release the allocated memory block.

FLOC(X)

Return the current position in an opened file X.

FLOF(X)

Return the size of an opened file X.

FOPENR(X)

Open a file X for reading purposes and return a handle or -1.

FOPENW(X)

Open a file X for writing purposes and return a handle or -1.

FRAC(X)

Return the non-integer part of expression X.

FREAD(X,Y,Z)

Load Z bytes into Y memory (or string) from opened file Z

and return number of read bytes.

FSAVE(X,Y,Z)

Save a memory block Y of length Z into a file X and return number of saved bytes or –1 if an error occured.

Note:
FSAVE erases any previous file with same filename.

FSEEK(X,Y)

Move for Y bytes inside opened file Z (from beginning of file).

(Return current position).

FWRITE(X,Y,Z)

Write Z bytes from Y memory (or string) into opened file X

and return number of written bytes.

FWRITELN(X,Y,Z)

Write Z bytes from Y memory (or string) + CHR(13) + CHR(10) into opened file X

and return number of written bytes.

GETCONTITLE()

Return the text of the titlebar of the console.

HACOS(X)

Return the inverted hyperbolic cosine of expression X.

HACOSEC(X)

Return the inverted hyperbolic cosecant of expression X.

HASEC(X)

Return the inverted hyperbolic secant of expression X.

HASIN(X)

Return the inverted hyperbolic sine of expression X.

HATN(X)

Return the inverted hyperbolic tangent of expression X.

HCOATN(X)

Return the inverted hyperbolic cotangent of expression X.

HCOS(X)

Return the hyperbolic cosine of expression X.

HCOSEC(X)

Return the hyperbolic cosecant of expression X.

HCOTAN(X)

Return the hyperbolic cotangent of expression X.

HEX(X)

Return a hexadecimal string representation of a numeric expression X.

Note:
A floating-point expression is converted into integer.

HEXB(X)

Return a hexadecimal string representation (0 padded) of an 8 bits numeric expression X.

Note:
A floating-point expression is converted into integer.

HEXD(X)

Return a hexadecimal string representation (0 padded) of a 32 bits numeric expression X.

Note:
A floating-point expression is converted into integer.

HEXW(X)

Return a hexadecimal string representation (0 padded) of a 16 bits numeric expression X.

Note:
A floating-point expression is converted into integer.

HIBYTE(X)

Return the high 8 bits part of a 16 bits numeric expression X.

HIWORD(X)

Return the high 16 bits part of a 32 bits numeric expression X.

HSEC(X)

Return the hyperbolic secant of expression X.

HSIN(X)

Return the hyperbolic sine of expression X.

HTAN(X)

Return the hyperbolic tangent of expression X.

HTICKS()

Return the value of the high resolution counter if available.

IIF(X,Y,Z)

Return Y if expression X is true or Z otherwise.

INKEY()

Return a key press

Contrary to GET subroutine, INKEY doesn't wait for the any key to be pressed.

INSTR(W,X,Y[,Z])

Search and return the position of string expression Y in string expression X starting at position W position (1 based). Optional [Z] argument specifies if the search is case sensitive or not (0 = case sensitive / any other value = not sensitive) (default is case sensitive).

INT(X)

Return the integer part of expression X

(round negative numbers to lower integer).

ISDOUBLE(X)
Return 1 if expression resolves to a floating pointer number, 0 otherwise.

ISINTEGER(X)
Return 1 if expression resolves to an integer number, 0 otherwise.

ISSTRING(X)
Return 1 if expression resolves to a string, 0 otherwise.

LBOUND(ARRAYNAME())

Returns the minimum index available in an array.

LCASE(X)

Return a string expression with string X converted into lowercase.

LEFT(X,Y)

Return Y number of leading chars from string expression X.

LEN(X)

Return the length of expression X:

Returns 4 if expression X is an integer.

Returns 8 if expression X is a floating point.

Returns string length if expression X is a string.

LINE()

Return last used line number (or current line number).

LOBYTE(X)

Return the low 8 bits part of a 16 bits numeric expression X.

LOG(X)

Return natural logarithm of expression X.

LOGN(X,Y)

Return natural logarithm of expression X in base Y.

LOWORD(X)

Return the low 16 bits part of a 32 bits numeric expression X.
LTRIM(X)

Return a string from expression X with leading spaces stripped out.

LTRIM2(X,Y)

Return a string from expression X with leading chars specified by Y expression (string or integer) stripped out.

MALLOC(X)

Return address of an allocated memory of size X or 0 if allocation failed.

MFREE(X)

Release a block of memory at location X previously allocated with MALLOC().

Return 0 if release failed.

MID(X,Y,[Z])

Returns the specified number of chars [Z] from a string expression X beginning at Y

If Z parameter isn't specified MBasic uses length of X expression.

Note:
Y expression can't be lower than 1 and Z must be zero or positive.

MREAD(X)

Return the content of 8 bits memory at location X previously allocated with MALLOC() or from a string.

MREADD(X)

Return the content of 32 bits memory at location X previously allocated with MALLOC() or from a string.

MREADW(X)

Return the content of 16 bits memory at location X previously allocated with MALLOC() or from a string.

NOT(X)

Return the negative complement of the integer expression X

NOW()

Return the current system time and time as a string.

PEEK(X)

Return the content of 8 bits memory at location X in Basic text area.

PEEKD(X)

Return the content of 32 bits memory at location X in Basic text area.

PEEKW(X)

Return the content of 16 bits memory at location X in Basic text area.

PI()

Return an approximation of pi (3.1415926535897932).

RIGHT(X,Y)

Return Y number of trailing chars from string expression X.

RND(X)

Return a random number between 1 and X (inclusive).

RTRIM(X)

Return a string from expression X with trailing spaces stripped out.

RTRIM2(X,Y)

Return a string from expression X with trailing chars specified by Y expression (string or integer) stripped out.

SEC(X)

Return the secant of expression X.

SGN(X)

Return the sign of expression X:

1
If expression is positive.

0
If expression is null.

-1
If expression is negative.

SIN(X)

Return the sine of expression X.

SIZE()

Return the number of bytes left unused by the program.

SIZEOF(X)

Return the length of expression X (See. LEN() for more details).

SPACE(X)

Return a string filled with the number of spaces specified by expression X.

SQRT(X)

Return the square root of expression X.

STR(X)

Returns a string representation of an expression X.

STRCMP(X,Y[,Z])

Compare string expressions X with Y and return :

1 if X>Y

0 if X=Y

-1 if X<Y

Optional [Z] argument specifies if the search is case sensitive or not (0 = case sensitive / any other value = not sensitive) (default is case sensitive).

STRING(X,Y)

Return a string of length X filled with the first char (byte) found in expression Y.

STRLINES(X)

Return the number of lines found inside a string expression X.

STRPAD(W,X,Y[,Z])

Insert a string of length X filled with the first char (byte) found in expression Y before and after string expression W and return the new created string.

DIM A:INT

A="aaa"

PRINT STRPAD(A,5,"B")

Result: BBBBBaaaBBBBB

Note:
The Z argument determines the maximum length of the final string.

(if Z is lower or equal to the original string this function have no effect).

STRPADL(W,X,Y[,Z])

Works like STRPAD() but only insert char before string expression X.

STRPADR(W,X,Y[,Z])

Works like STRPAD() but only insert char after string expression X.

STRREVERSE(X)

Return a string containing all letters of string expression X swapped.

STRROTATEL(X)

Return a string expression X rotated from right to left.

STRROTATER(X)

Return a string expression X rotated from left to right.

STRSTOT(X)

Return a string expression from string X with all spaces chars converted into tabs.

STRTTOS(X)

Return a string expression from string X with all tabs chars converted into spaces.

TAN(X)

Return the tangent of expression X.

TCASE(X)

Return a string expression with string X chars cases toggled.

TICKS()

Return the number of milliseconds since Windows started.

TIME()

Return the current system time as a string.

TRIM(X)

Return a string from expression X with both leading and trailing spaces

stripped out.

TRIM2(X,Y)

Return a string from expression X with both leading and trailing chars specified by Y expression (string or integer) stripped out.

TRUE()

Return the value 1.

UBOUND(ARRAYNAME())

Returns the maximum index available in an array.

UCASE(X)

Return a string expression with string X converted into uppercase.

WSWAP(X)

Returns 32 bits numeric expression X with the 2 words (16 bits) swapped.

5. Builtin commands

MBasic statement subroutines are listed below with short examples and explanations, this wasn't meant to be a basic learning course but an overview of MBasic available subroutines with their particularities.

 5.1. Variables assignations

Assign a variable or array cell to a value or expression:

A=234-5*6:A=A/2:X=A-100:ARRAY1(X+9)=A-1

Complex and recursive expressions are allowed:

ARRAY(0)=ARRAY1((ARRAY1(A+X)+ ARRAY1((ARRAY1(12)-B)*X)+5)=((A*5)/ ARRAY1((X/2)+A))

 5.2. BEEP

BEEP

Emits a Beep on internal speaker or a standard Windows alert sound if a sound card is connected.

 5.3. BITCLR

BITCLR &X,Y

Clear the bit specified by integer expression Y (0-31 range) in integer variable X.

 5.4. BITINV

BITINV &X,Y

Invert the bit specified by integer expression Y (0-31 range) in integer variable X.

 5.5. BITSET

BITSET &X,Y

Set the bit specified by integer expression Y (0-31 range) in integer variable X.

 5.6. CLS

CLS

CLS clear console screen and sets background and foreground colours with current colors values (see COLOR subroutine).

 5.7. COLOR

COLOR X, [Y]

COLOR subroutine sets the foreground (X) and background (Y) colors for following PRINT subroutines. Arguments range from 0 to 15 and are identical to standard DOS colors.

Note:
Background color won't be modified if Y parameter is not specified.

 5.8. DIM

DIM X[(Y)][:|AS][INT[EGER]|[FP]|[FLOAT]|STR[ING]]

Declare a new variable or an array of given type/size.

Examples:

DIM MYARRAY(100):INT

DIM MYVAR AS INTEGER

DIM MYARRAY(20) AS FLOAT

DIM A_VAR_NAME:STR

DIM ARRAY123(10):STRING

 5.9. DOEVENTS

DOEVENTS

Wait for other Windows tasks to finish before executing the next MBasic statement.

 5.10. ELSE

ELSE

Revert last condition inside a conditional block of subroutines initiated with IF.

IF A<B THEN

? "PRINT THIS STRING IF A<B"

ELSE

? "OR PRINT THIS ONE IF A>=B"

END IF

Note:
Several ELSE statements can be used within a conditional block allowing to add several block epilogues depending of current condition verification state (i know this is not standard but it can be useful).

Note: ELSE IF statements are also possible.
 5.11. END

END

See STOP subroutine.

 5.12. END IF

END IF

Terminates a conditional block of subroutines.

 5.13. EXIT FOR

EXIT FOR

EXIT FOR is used to break FOR..NEXT loop, program will jump to the first statement after corresponding NEXT subroutine.

 5.14. FCLOSE

FCLOSE X

FCLOSE closes a previously opened file.

Note:
X value must be a valid file handle.

 5.15. FCOPY

FCOPY X, Y

FCOPY makes a copy of file X under filename Y.

Note:
FCOPY doesn't overwrite any existing file.

 5.16. FKILL

FKILL X

FKILL deletes one of more files specified by string expression X.

FKILL "c:\My Documents*.xyz"
' They are useless anyway

The example above erases all files with .xyz extension in "c:\My Documents" directory.

 5.17. FMKDIR

FMKDIR X

FMKDIR creates a directory of specified X name.

 5.18. FNAME

FNAME X, Y

FNAME renames specified X file under filename Y.

Note: FNAME doesn't overwrite any existing file

 5.19. FOR

FOR W=X TO Y [STEP Z]

FOR subroutine is used to initialise a loop within a program using a variable W starting from
X until it reach Y, each variable increment uses step Z or 1 if not mentioned.

Example:

FOR X=1 TO 10

FOR X=10 TO 0 STEP -2

PRINT "Number ";X

PRINT "Number ";X

NEXT &X

NEXT

FOR subroutines can be nested up to 16 depth levels by default. That is, one FOR loop can contain 15 other FOR loops with different loop variables.

Note: Used variables can be arrays cells as well.

 5.20. FRMDIR

FRMDIR X

FRMDIR deletes a directory of specified X name (directory must be empty).

 5.21. FSAVE

FSAVE X, Y, Z

Save a memory block Y of length Z into a file X.

Note:
FSAVE erases any previous file with same filename.

 5.22. FSEEK

FSEEK X, Y

Move for Y bytes inside opened file X (from beginning of file).

 5.23. FWRITE

FWRITE X, Y, Z

Save Z bytes from Y memory (or string) into opened file X

and return number of written bytes.

Example:

DIM HANDLE AS LONG

DIM STRINGTOPRINT AS STRING

STRINGTOPRINT = "print dis"

HANDLE = FOPENW("prt:")

IF HANDLE = -1 THEN PRINT "Can't open device":END

FWRITE HANDLE, STRINGTOPRINT, LEN(STRINGTOPRINT)

FCLOSE HANDLE

This will send the "print dis" string to the current selected printer.
 5.24. FWRITELN

FWRITELN X, Y, Z

Write Z bytes from Y memory (or string) + CHR(13) + CHR(10) into opened file X

and return number of written bytes.

 5.25. GET

GET &X

GET subroutine waits for a key to be typed. When it is done, variable following this subroutine assumes the value of key pressed (ASCII code for letters/numbers, special code for control keys).

Note:
Execution is halted until a key is pressed.

Note:
GET converts key value according to passed variable type.
 5.26. GOSUB

GOSUB X

The GOSUB subroutine is used to invoke a subroutine ended with a RETURN subroutine. It must be the last subroutine within any given statement. GOSUB subroutines can be nested, up to 16 depth levels.

GOSUB A*10+B

Like 'GOTO' subroutines, this form of "computed GOSUB" is allowed and will cause a different subroutine to be executed depending upon the value of the expression that follows "GOSUB"..

 5.27. GOTO

GOTO X

GOTO subroutine is used to directly jump to a specified line.

GOTO 120

In this example, control is passed unconditionally to statement number 120. The GOTO subroutine must appear as the last subroutine in any given statement for obvious reasons.

GOTO A*10+B

This form of "computed GOTO" is allowed. In this case, control is passed to the statement number represented by the expression that follows "GOTO".

 5.28. HWAIT

HWAIT X

The HWAIT subroutine is used to pause MBasic execution for X milliseconds. Unlike WAIT subroutine, HWAIT is based on high resolution computer timer (if available).

 5.29. IF

IF X [[=] [<] [>] [<=] [>=] [<>] [!=]] [Y]

The IF subroutine works with the comparison operators (enumerated above) to check the validity of the specified comparison condition.

If the comparison result is TRUE (1), then rest of the subroutines in the same statement is executed. However, if the comparison tests FALSE (0), then the block of subroutines in the statement (or the next statements) are not executed and control passes to the statement with the next highest line number or following a corresponding ELSE or END IF statement.

Allowed formats are:

IF A<B X=3:PRINT "string"

IF A<B THEN X=3:PRINT "string"

or

IF A<B THEN

IF A<B

X=3

X=3

PRINT "string"

PRINT "string"

END IF

END IF

Note:
Any expression <>0 is considered to be TRUE.

 5.30. INPUT

INPUT [X], &Y, [Z]

The INPUT subroutine is used to acquire input datas from user during program execution. MBasic will wait for a string or a number to be typed and echoed at the console, then the specified variable will assume the value of the appropriate input.

LOCATE 5,12:INPUT "Enter a value : ",&A

In this example MBasic will print the string "Enter a value : " and wait for user's input (result placed in variable A).

Optional Z argument allow to specify maximum of chars to be entered

(default is 18).

Note:
INPUT subroutine uses passed variable type to convert user’s input.

 5.31. LET

LET X=Y

Performs same operation as a standard variable assignation.

 5.32. LOCATE

LOCATE X, Y, [Z]

LOCATE subroutine moves the cursor to the horizontal (X) and vertical (Y) position of console screen. Optional argument (Z) makes cursor visible (=1) or hidden (=0).

In following example, "Hello" text is printed at column 25, line 12 of console screen with a visible cursor:

LOCATE 25,12,1:PRINT "Hello"

 5.33. MCOPY

MCOPY X, Y, Z

MCOPY copies memory location X into memory location Y for Z bytes

Note:
This instruction can lead to a program crash if used without care. It should be only used with block of memory allocated with MALLOC() or a string.

 5.34. MFILL

MFILL X, Y, Z

MFILL fills memory location X with 32 bits integer Y for Z bytes.

A=MALLOC(256)

IF A

MFILL A,0x20202020,256

MFREE A

END IF

The above example allocates 256 bytes in the memory then fills the complete block with spaces and frees the allocated memory block.

Note:
This instruction can lead to a program crash if used without care. It should be only used with block of memory allocated with MALLOC() or a string.

 5.35. MFREE

MFREE X

MFREE frees a memory block previously allocated with MALLOC().

 5.36. MROTATEL

MROTATEL X, Y

Rotate a block of memory (or a string) X of size Y from right to left.

 5.37. MROTATER

MROTATER X, Y

Rotate a block of memory (or a string) X of size Y from left to right.

 5.38. MWRITE

MWRITE X, Y

MWRITE writes 8 bits value specified by Y at memory location X.

Note:
This instruction can lead to a program crash if used without care. It should be only used with block of memory allocated with MALLOC() or a string.

 5.39. MWRITED

MWRITED X,Y

MWRITED writes 32 bits value specified by Y at memory location X.

Note:
This instruction can lead to a program crash if used without care. It should be only used with block of memory allocated with MALLOC() or a string.

 5.40. MWRITEW

MWRITEW X, Y

MWRITEW writes 16 bits value specified by Y at memory location X.

Note:
This instruction can lead to a program crash if used without care. It should be only used with block of memory allocated with MALLOC() or a string.

 5.41. NEXT

NEXT [&X]

The variable specified by the NEXT subroutine is optional. A NEXT without variable doesn't perform any loops overlapping control.

Note:
NEXT operates slightly faster than NEXT &Variable due to instructions decoding scheme.

 5.42. POKED

POKED X, Y, [...]

The POKED subroutine is used to place 32 bits data Y into MBasic memory address X. This subroutine may be repeated as shown below:

POKED A,VARIABLE,0xFF,ELEMENT(10)

In the above example, data VARIABLE is placed in memory location A, then data 0xFF is placed in memory location A+4, then data ELEMENT(10) is placed in memory location A+8... All variables may be integer expressions as well.

 5.43. POKEW

POKEW X, Y, [...]

The POKEW subroutine is used to place 16 bits data Y into MBasic memory address X. This subroutine work as POKED but memory displacement is 2 instead of 4.

 5.44. POKE

POKE X, Y, [...]

The POKE subroutine is used to place 8 bits data Y into MBasic memory address X. This subroutine work as POKEW but memory displacement is 1 instead of 2.

 5.45. PRINT
PRINT [#X];X;[...]

PRINT subroutine is used to display a string in the console window it accepts any number of arguments and features a special subroutine to format numbers display.

PRINT A*3+1;"ABC"

This form of the PRINT subroutine will print the value of the expression A*3+1 on the console, followed by the string ABC on the same line.

Note:
Only double quotes (") may be used to denote literal strings.

PRINT A;B;#3;C;D;E;#10;F;G

This form of the PRINT subroutine demonstrates format control. The format character # is used to indicate the number of leading spaces to be printed before a number. The default number is 0. Once the # format is invoked it is active for the remainder of the statement unless overridden by a subsequent format specifier, as in the above example.

Note:
? char is an alias for PRINT subroutine.

 5.46. REM

REM [X]

MBasic ignores anything written after a REM subroutine.

REM This is a comment

PRINT "A string" ' This is another comment

Note:
' char is considered as a REM subroutine as well but can also be used next to a valid line subroutine.

 5.47. RETURN

RETURN

The RETURN subroutine causes execution to resume at the statement that follows the GOSUB that caused the current subroutine to be executed. RETURN may be the last subroutine of any given statement.

 5.48. SETCONTITLE

SETCONTITLE X

SETCONTITLE changes the titlebar text of the MBasic console.

 5.49. STOP

STOP

This subroutine stops the execution of a MBasic program and passes control to the MBasic editor. All initialised variables keep their values and can be printed for testing or debugging purposes. STOP may be the last subroutine in any given statement for obvious reasons.

 5.50. SWAP

SWAP &X, &Y

SWAP exchange the contents of two given variables.

Note:
Variables must be of the same type.
 5.51. SWAPGT

SWAPGT &X, &Y

SWAPGT exchange the contents of two given variables only and only if the content of &X is greater than the content of &Y (Comparisons between strings variables are case sensitive).

Note:
Variables or array element must be of the same type.

 5.52. SWAPLW

SWAPLW &X, &Y

SWAPLW exchange the contents of two given variables only and only if the content of &X is lower then the content of &Y (Comparisons between strings are case sensitive).

Note:
Variables or array element must be of the same type.
5.53. VARTOINT

VARTOINT &X

VARTOINT subroutine will force a variable X type to be considered as an integer.

Note:
Floating point variables can't be converted that way.

 5.54. VARTOSTR

VARTOSTR &X

VARTOSTR subroutine will force a variable X type to be considered as a string.

Note:
Floating point variables can't be converted that way.

 5.55. WAIT

WAIT X

The WAIT subroutine is used to pause MBasic execution for X milliseconds. WAIT subroutine is based on internal computer timer and is thus independent of processor speed.

Note:
WAIT 0 will flush windows "multi-tasking" environment (Based on MBasic remaining time). WAIT -1 will perform an infinite loop.

 5.56. WEND

WEND

WEND subroutine is used together with WHILE subroutine to mark a loop.

 5.57. WHILE

WHILE X

WHILE subroutine is used to perform a conditionnal loop within a program.

Example:

DIM A:INT:A=0

WHILE A<10

PRINT A

A=A+1

WEND

WHILE subroutines can be nested up to 16 depth levels.

 5.58. WINDOW

WINDOW [X, Y][,EDIT]

WINDOW subroutine is used to resize current console window with new horizontal (X) and vertical (Y) dimensions mentioned in characters. Following example resizes current console window with 40 characters width and 25 lines height:

WINDOW 40,25

Optional 'EDIT' argument is used alone. It resizes current console window with original MBasic editor sizes and colours.

Note:
WINDOW subroutine works slightly differently under Windows 9x/ME and NT/2000. After a WINDOW subroutine is issued, characters may be unreadable. In this case, you will have to resize window by yourself or modify characters size from 'Auto' to a fixed size in the menu bar.

6. Sample programs

Some examples programs are delivered with MBasic to show off how sexy it is.

 6.1. PITMAN

Author: Sylvain Bizoirre
sb@retromatique.com

Notes from the author :

I wrote PITMAN in 1984 for the Sharp MZ 80 computer... and sold it in compiled version with a good success! I forgot it for a long time and recently found it again in an old audio tape. At the time I didn't think about structured programming methods, but to fit this program in 8 Kb. of memory.

I kept this program intact and just adapted it to MBasic. PITMAN is a good example of MBasic capabilities and a real headache for players. If you like this game and create new headache stages, don't hesitate to let me know !

6.2. BENCHMARK

Author: Franck Charlet
hitchhikr@australia.edu

Notes from the author :

This program was written to test MBasic performances with various datas manipulations and instructions decoding. I have converted it to several Basics in order to measure (and improve) MBasic speed. Here are the results obtained on my P133 machine under Windows 2000 (all results are reported in seconds) :

Tested with :

99 Basic
Interpreted (Probably PCode).

BBC Basic
Interpreted (Pcode).

Chipmunk Basic
Interpreted (Probably PCode).

Ibasic
Executable file (Probably Pcode).

Liberty Basic
Interpreted (Probably PCode).

MBasic
Interpreted (PCode).

PDS 7
Executable file (Native).

RapidQ
Executable file (PCode).

Small Basic
Interpreted (Byte Code).

True Basic
Interpreted (Probably PCode).

Visual Basic 4
Executable file (PCode + Native).

Visual Basic 6 (N)
Executable file (Native).

Visual Basic 6 (P)
Executable file (PCode + Native).

WxBasic
Interpreted (Probably PCode).

YaBasic
Interpreted (Probably PCode).

FP ops
FP fncs
Int ops
Int fncs
Str fncs
Sort

99 Basic *
~28.xxx
~36.xxx
~47.xxx
~31.xxx

~49.xxx

BBC Basic *
~11.189
~27.402
~16.684
~7.570

~7.870

Chipmunk Basic
~3.xxx
~7.xxx
~8.xxx
~4.xxx
~21.xxx
~6.xxx

Ibasic
~74.688
~195.572
~89.628
~84.090
~71.091
~63.469

Liberty Basic **
~27.961
~29.372
~28.661

~30.484
~30.394

Mbasic
~2.734
~4.767
~6.309
~3.925
~8.563
~4.196

PDS 7
~0.140
~2.781
~0.050
~0.488
~3.070
~0.460

RapidQ
~14.752
~20.349
~30.424
~17.585
~29.792
~19.558

Small Basic
~12.938
~16.674
~23.294
~15.172
~40.939
~14.611

True Basic
~3.224
~9.104
~7.981
~10.545
~3.575
~3.615

Visual Basic 4
~1.102
~2.584
~4.036
~2,083
~8.112
~0.992

Visual Basic 6 (N)
~0.291
~1.793
~0.110
~0.140
~4.476
~0.120

Visual Basic 6 (P)
~1.913
~2.954
~4.216
~2.203
~9.103
~0.881

WxBasic
~8.392
~11.226
~17.866
~10.575
~9.644
~13.139

YaBasic
~8.xxx
~13.xxx
~14.xxx
~10.xxx
~18.xxx
~13.xxx

* Doesn't know about UCASE().
** Doesn't know about SGN().

Average times and distribution status:

1
Visual Basic 6 (N)
~1.155
Commercial

2
PDS 7
~1.164
Commercial

3
Visual Basic 4
~3.151
Commercial

4
Visual Basic 6 (P)
~3.545
Commercial

5
MBasic
~5.082
Freeware

6
True Basic
~6.340
Commercial

7
Chipmunk Basic
~8.166
Freeware

8
WxBasic
~11.807
Freeware

9
YaBasic
~12.666
Freeware

10
BBC Basic
~14.143
Commercial

11
Small Basic
~20.604
Freeware

12
RapidQ
~22.076
Freeware

13
Liberty Basic
~29,374
Commercial

14
99 Basic
~38.200
Freeware

15
IBasic
~96.423
Commercial

6.3. Test programs

Author: Various

Some little programs have been included in distribution package for test purposes (this is not complete at all). Most of them are coming from ByWater Basic :

Abs.bas
Test ABS function

ArrayBounds.bas
Test arrays bounds checking

Dim.bas
Test variables/arrays dimensioning/loading

End.bas
Test END Statement

ExitFor.bas
Test EXIT FOR statement

ForNext.bas
Test FOR-NEXT statements

GoSub.bas
Test GOSUB Statement

GotoLabel.bas
Test GOTO Statement

IfLine.bas
Test IF THEN followed by GOTO

MultiIfThen.bas
Test multilines IF-THEN statements

Sieve.bas
Test arrays

Stop.bas
Test STOP statement

WhileWend.bas
Test WHILE-WEND Loops

