There are no variables in asm, just data. Data is defined like this:

Db 01h,02h,03h,04h

This line produces 4 consecutive bytes in memory.

Dd 4030201h

This line produces a single dword in memory.

Note that the above two lines produce exactly the same thing. Dword values are stored with the low byte first and the high byte last. (this is a peculiarity of Intel)

You can also declare the above data like this (it still produces exactly the same thing)

Db 01h

Db 02h

Db 03h

Db 04h

Assembly instructions are translated into byte sequences when they are assembled. When looking at a program in memory, it is impossible to tell the difference between code and data. For example because the byte sequence for mov eax,edx is 8B,C2 the follwing are the same:
Mov eax,edx

OR

db 8B,C2

There is one final way to declare data. Because ASCII strings would be a real pain if you had to type each byte, MASM converts ASCII strings to lists of bytes. For example instead of using:

Db 97,98,99

You can put

Db “abc”

To summarise:

All a program consists of is lists of data. Some of that data is actually data, whereas other stuff is code.

There are four ways to declare data:

1. Use db, dw, or dd on separate lines

db 1 [newline] db 2 [newline] db 3

2. Use db, dw, or dd on one line

db 1,2,3

3. Use db with string data

db “abc”

4. Use assembly mnemonics, which are converted to lists of bytes by the assembler.

Note that you can use any combination of the first three methods: example;

Dd 34h

Db 98h,”This is a string”,0,”Another string”

Dw 10011100b

Note that suffixes on the numbers say what base they are in. b = Binary, d = Decimal, h = Hex. If you don’t put one, MASM assumes that it is decimal.

Special things:

Db ?
means that this byte will be uninitialised, so you cannot rely on what it is at the beginning of the program.
Db 5 dup(3h)

this gets expanded by MASM to:

Db 3h,3h,3h,3h,3h

This is useful when reserving a large portion of memory to store data in (a buffer):

Db 512 dup(0)
creates a 512 byte long space in memory filled with zeroes.

You could do this by typing db 0,0,0,0,0,… 512 times
, but this would get boring.
