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SUMMARY

Long division of natural numbers plays a crucial role in Cobol arithmetic, cryptography, and
primality testing. Only a handful of textbooks discuss the theory and practice of long division,
and none of them do it satisfactorily. This tutorial attempts to fill this surprising gap in the
literature on computer algorithms. We illustrate the subtleties of long division by examples, define
the problem concisely, summarize the theory, and develop a complete Pascal algorithm using a
consistent terminology.
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INTRODUCTION

Long division of natural numbers plays a crucial role inCobol arithmetic,1

cryptography,2 and primality testing.3 While writing a program for primality testing,4

the author learned two lessons the hard way:

1. Only a handful of textbooks discuss the theory and practice of long division,
and none of them do it satisfactorily.

2. A correct, efficient algorithm for long division cannot be reinvented with
minimal effort.

This tutorial attempts to fill this surprising gap in the literature on computer algor-
ithms.

A helpful description of an algorithm should include three elements:

1. An informal introduction that illustrates the problem and its solution by well-
chosen examples.

2. A concise definition of the general problem and an explanation of the compu-
tational theory.

3. A well-structured complete algorithm written in a standard programming langu-
age using the same terminology as the theoretical discussion.

The best textbooks on algorithms satisfy all three requirements. However, computer
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scientists do not always appreciate that a professional programmer cannot rely on a
complex algorithm unless it is written in a programming language that runs on an
available computer. There are too many pitfalls in purely theoretical arguments about
‘pseudocode’ that cannot be compiled and executed on any computer.

We are aware of only four texts that deal with multiple-length division. We will
briefly discuss how well they satisfy the above criteria.

In 1969 Donald Knuth published a volume onSeminumerical Algorithms.5 This
work contains the most comprehensive treatment of multiple-length arithmetic:

1. In his introduction to long division, Knuth gives a three-line hint of an example
and remarks that ‘It is clear that this same idea works in general.’

2. Knuth covers most of the relevant theory from the literature.
3. Knuth presents a division algorithm in three different ways. The first version

is a mixture of English, mathematical notation, andgoto statements. The second
one is an informal flowchart that merely shows the flow of control. The third
attempt is written in the assembly language MIX with informal comments.
Each of these versions conveys insight, but none of them inspire complete
confidence in the finer details. They are obviously not well-structured algorithms
written in a standard programming language.

However, we must keep in mind that Knuth wrote the first edition of his book
in the late 1960s, when structured programming was still in its infancy.

Ten years later,Suad Alagic´ and Michael Arbib wrote a book onThe Design of
Well-Structured and Correct Programs.6 This text has two pages on long division:

1. Alagić and Arbib do not illustrate long division by examples.
2. They state four theorems from Knuth without motivation, proof, or reference.
3. Their algorithm for long division consists of 56 lines written in Pascal. The

entire program is a single compound statement composed of shorter statements
according to the principles of structured programming. However, the lack of
procedures makes it hard to study the algorithm bottom-up (or top-down) at
different levels of detail. The program assumes that array dimensions correspond
exactly to the lengths of operands. As it stands, the program cannot be compiled
and executed. (It has one syntax error and two undeclared names.) The algorithm
is helpful, but not sufficiently developed for software design.

Clearly, this program could have been developed further. If the authors had
finished the job, there would have been no need to write this tutorial. Alagic´ and
Arbib make a devastating remark about this part of their book: ‘The reader who
has struggled through [our program]—which is typical of the way in which programs
are presented and documented—may come to understand the advantages of a top-
down approach to presenting a program.’

This brings us toDerick Wood’s textbook onParadigms and Programming with
Pascal,7 which presents a slightly different form of long division:

1. Wood carefully explains long division by an example.
2. His method underestimates quotient digits and corrects them by a slow loop

that uses multiple-length arithmetic. The main problem is the lack of a theory
that predicts the maximum number of corrections required.
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3. Wood’s algorithm consists of seven procedures, three of which are left as
exercises. With one exception, the remaining procedures are well-structured and
well-explained. However, the main procedure for long division contains a
complicatedwhile statement that tests and prepares its own termination in the
middle of the loop.

In his book onPrime Numbers and Computer Methods for Factorization, Hans
Riesel8 makes the following observation: ‘Unfortunately% the performance of exact
computations on large integers has a limited appeal, and computer manufacturers do
not find it profitable to include such facilities in the software that goes with their
hardware. This means that the reader may have to construct such a package himself
for the computer he is using% [We] shall discuss ways in which this can be done’.

1. Riesel has no examples of long division.
2. According to Riesel, ‘Division is by far the most complicated of the four

elementary operations’. In spite of that, he immediately adds that ‘We shall
only sketch division’. This warning is followed by a single page of hints with
no theoretical analysis.

3. Without further explanation, Riesel presents a Pascal procedure of 45 lines,
which usesgoto statements (instead ofwhile and for statements) to implement
iteration. Although written in a standard language, this procedure is too hard
to follow.

These evaluations of existing textbooks are written not for the sake of criticizing
the authors, but to explain why it is necessary to discuss a fundamental algorithm
that has been known for five centuries.9 When you need multiple-length division on
a computer, you will look in vain for a textbook that combines an elegant algorithm
with a simple explanation.

In the following, we illustrate the subtleties of long division by examples, define
the problem concisely, summarize the theory, and develop a complete Pascal algor-
ithm using a consistent terminology. We also derive the complexity of the algorithm
and explain how the radix is selected. The appendix contains proofs of the theorems
on which the algorithm is based.

LONG DIVISION

Most computers limit integer arithmetic to operands of 32–64 bits, corresponding to
8–17 decimal digits. A larger integer must be represented by an array of digits,
each occupying a single machine word. The arithmetic operations on multiple-length
integers are serial operations that imitate paper-and-pencil methods.

If a machine word represents a decimal digit, a 100-digit decimal number requires
100 machine words. However, if we use radix 1000 (instead of ten), the same
number occupies 34 words only. A large radix reduces both the memory space of
multiple-length integers and the execution time of the serial arithmetic.

Multiple-length division is surprisingly difficult. The following example illustrates
long division of decimal numbers, as we learned it in school.
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Example 1
3098

102)0316097
0306
0100
0000
1009
0918
0917
0816
101

The initial remainder is the dividend 316097 extended with a leading zero:
0316097. (The purpose of the extra digit will soon become apparent.)

The quotient digits are computed one at a time:

(1) Since the divisor has three digits, we divide the four leading digits of the
remainder by the divisor:

0316 div 102 = 3

This gives us the leading digit of the quotient. The remainder is then reduced
to 010097 as shown.

(2) We divide the four leading digits of the new remainder by the divisor to get
the next quotient digit:

0100 div 102 = 0

This leaves a remainder of 10097.
(3)–(4) We use the same method to compute the last two digits of the quotient:

1009 div 102 = 9

0917 div 102 = 8

The final remainder is 101.
In each step, we treat the four leading digits of the remainderr as an integer

r{4} and use the divisord to compute aquotient digit qk:

qk = r{4} div d

The integerr{4} is called a prefix of the remainder.
Table I is a different representation of the division steps in Example 1.

Table I.

k r{4} qk

3 0316 3
2 0100 0
1 1009 9
0 0917 8
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Without a zero in front of the initial remainder, the computation of the first
quotient digit would be a special case:

316 div 102 = 3

requiring three digits of the remainder (instead of four).
If the divisor has many digits, a quotient digit can seldom be computed directly,

but must be estimated and corrected, if necessary. The main challenge is to replace
human intuition about this process by an efficient iterative algorithm.

The three leading digits of the remainder define a shorterprefix r{3}. Similarly,
the two leading digits of the divisor define aprefix d{2}. We will use

r{3} div d{2}

as an initial estimate of the quotient digitqk. Since a decimal digit must be less
than 10, the initial estimateqe is defined as follows:

qe = min(r{3} div d{2},9)

The error of the initial estimate is the difference:

Dq = qe 2 qk

In Example 1, whered{2} = 10, the initial estimate produces the sequence of
digits shown inTable II.

In every step,

0 # Dq # 1

Later we will see that this inequality always holds. So, the most obvious idea is to
correct atrial digit qt as follows:

qt := qe;
if r{4} , d*qt then qt := qt 2 1

At the end of this iteration,qt = qk.
In Example 1, half of the initial guesses require a single correction. The number

of corrections can be reduced dramatically byscaling the operands before the
division: We multiply the divisor and the dividend by the same digit. The scaling

Table II.

k r{4} qk r{3} qe Dq

3 0316 3 031 3 0
2 0100 0 010 1 1
1 1009 9 100 9 0
0 0917 8 091 9 1
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must make the leading digit of the divisor at least equal to half of the radix without
changing the length of the divisor. This is callednormalization.

Example 2

Example 1 is normalized by multipling both operands by five:

102 × 5 = 510

0316097× 5 = 1580485

The leading digit of the normalized divisor is equal to 5, which is half of the
radix 10. The normalized divisor still has three digits only. Since the original
dividend already had an extra digit-position, normalization does not change its length
either. This is another reason for adding the extra digit.

After normalization, division proceeds as usual:

3098
510)1580485

1530
0504
0000
5048
4590
4585
4080
505

Finally, the remainder is divided by the scaling factor to obtain the remainder of
the original problem:

505 div 5 = 101

In each step, the initial estimateqe is the prefix r{3} divided by the prefix d{2}
= 51 (seeTable III).
In this example, the initial estimates are exact estimates of the corresponding quotient
digits. However, in general, normalized division occasionally requires correction of
an initial estimate. In decimal arithmetic, the average number of corrections is less
than 20 per cent. For higher radices, corrections are rarely necessary.

After this intuitive exploration, we are ready for a concise analysis of the problem.

Table III.

k r{4} qk r{3} qe Dq

3 1580 3 158 3 0
2 0504 0 050 0 0
1 5048 9 504 9 0
0 4585 8 458 8 0
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THE ESSENCE OF THE PROBLEM

We are considering long division of two natural numbers,x and y:

q = x div y

r = x mod y (1)

where x $ 0 and y . 0.
The quotientq and the remainderr are natural numbers which satisfy the constraints

x = y q 1 r (2)

0 # r # y 2 1 (3)

Each number is represented by an array of digits inradix b. The dividend xhas
n digits:

x = xn21bn21 1 xn22bn22 1%1 x0 (4)

and thedivisor y has m digits:

y = ym21bm21 1 ym22bm22 1%1 y0 (5)

Two special cases immediately arise:

1. m = 1: if the divisor is a single-digit number, we will use a very simple
division algorithm. Since zero is a single-digit number, this algorithm will also
detect overflow.

2. m . n: if the divisor is longer than the dividend, the quotient is zero and the
remainder isx.

In the theoretical analysis, we will concentrate on the remaining case

2 # m # n (6)

where the divisor has at least two digits, and the dividend has at least as many
digits as the divisor.

Before the division, we multiply the operands by ascaling factor f$ 1 that will
be defined later. The following abstract program definesnormalized division:

var x, y, q, r, d, f: integer;
begin

r := x*f;
d := y*f;
q := r div d;
r := (r mod d) div f

end

The normalized divisor d= yf hasm digits:

d = dm21bm21 1 dm22bm22 1%1 d0 (7)
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Since y . 0 and f $ 1, we also haved . 0.
The quotient qhasn 2 m 1 1 digits:

q = qn2mbn2m 1 qn2m21bn2m21 1%1 q0 (8)

The initial remainder r= xf hasn 1 1 digits. Immediately before the computation
of quotient digit qk, the remainderr has been reduced tok 1 m 1 1 digits:

r = rk1mbk1m 1 rk+m21bk1m21 1%1 r0 (9)

where 0# k # n 2 m.
The leadingm 1 1 digits of the remainder define aprefix r{ m 1 1}:

r{ m 1 1} = rk1mbm 1 rk1m21bm21 1%1 rk (10)

The essence of multiple-length division is the computation of a singlequotient
digit qk:

qk = r{ m 1 1} div d (11)

by iteration.
To simplify the algebra a bit, we will assume that theradix b is even, say a

power of two or ten:

b div 2 = b/2 $ 1 (12)

TRIAL ITERATION

The initial estimate

The computation of a quotient digitqk is an iteration that decrements an initial
estimate until it equalsqk. The most conservative guess isb 2 1, which requires
O(b) corrections. Fortunately, there is a much better choice.

The three leading digits of the remainderr define aprefix r{3}:

r{3} = rk1mb2 1 rk1m21b 1 rk1m22 (13)

The prefix d{2} consists of the two leading digits of the divisord:

d{2} = dm21b 1 dm22 (14)

where

2 # m # k 1 m # n (15)

We assume thatr{3} and d{2} can be represented as single-length integers.
We will use

qe = min(r{3} div d{2}, b 2 1) (16)

as theinitial estimateof qk. Obviously, 0# qe # b 2 1.
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The following theorems show thatqe is an excellent guess. They are due to E.
V. Krishnamurthy and Salil Nandi.10 (The appendix includes the proofs of all
theorems used.)

Theorem 1

qk # qe

Theorem 2

qe # qk 1 1

By combining Theorems 1 and 2 with the assumption thatqk is a digit, we obtain
the inequality

0 # qk # qe # qk 1 1 # b (17)

So, the initial estimateqe is either correct or off by 1.

Trial correction

The computation of aquotient digit qk is based on two simple theorems about
any trial digit qt:

Theorem 3

If r{ m 1 1} , dqt then qk , qt

Theorem 4

If r{ m 1 1} $ dqt then qt # qk

These theorems and (17) suggest the followingtrial iteration:

qt := qe;
if r{m 1 1} , d*qt then qt := qt 2 1

Here is the same algorithm with assertions added:

{0 # qk # qe # qk 1 1 # b by (17)}
qt := qe;
{0 # qk # qt # qk 1 1 # b}
if r{m 1 1} , d*qt then

{0 # qk , qt # qk 1 1 # b by Theorem 3}
qt := qt 2 1
{0 # qk # qt ‹ qk 1 1 # b}

else {0 # qk # qt # qk , b by Theorem 4}

The if statement terminates with the postcondition:

0 # qk # qt # qk # b 2 1
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which implies thatqt = qk.
We will show that the frequency of trial corrections depends on theleading digit

d{1} of the divisor d:

d{1} = dm21 (18)

where 1# d{1} # b 2 1.
The computation of quotient digitqk is equivalent to the integer division

qk = r{ m 1 1} div d

which leaves a remainder

r{ m 1 1} mod d = r{ m 1 1} 2 dqk

where 0# r{ m 1 1} mod d , d.
We assume that the relative remainder

zk = (r{ m 1 1} mod d)/d = r{ m 1 1}/d 2 qk

is a random variable with a uniform distribution between 0 and 1.
At this point, we need another theorem:

Theorem 5

If qk = qe 2 1 then r{ m 1 1}/d 2 qk . 1 2 1/d{1}

The probability that a correction is required is

P(qk = qe 2 1) = P(zk . 1 2 1/d{1})

In other words,

P(qk = qe 2 1) , 1/d{1} (19)

To reduce the number of corrections, we should obviously make the leading digit
of the divisor as large as possible. This requires normalization of the operands.

Normalization

The divisord is normalized if its leading digit is at least half of the radixb:

1 # b/2 # d{1} # b 2 1 (20)

This requirement implies that

1 # bm/2 # d # bm 2 1 (21)

The leading digit y{1} of the original divisor y is
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y{1} = ym21 (22)

where 1# y{1} # b 2 1. This digit determines thescaling factor f:

f = b div (y{1} 1 1) (23)

Obviously, 1 # f # b/2.
The following theorem shows that normalization is done correctly.

Theorem 6

bm/2 # yf # bm 2 1

From now on, we assume that the divisord = yf is normalized. By (19) and (20),
the probability that an initial estimeqe needs to be decremented is bounded as follows:

P(qk = qe 2 1) , 2/b

In decimal division, at least 80 per cent of the initial estimates are correct. For
radix 1000, each guess is correct with probability 0·998.

PASCAL ALGORITHM

With this background, we are ready to write a Pascal algorithm for multiple-length
division. The theoretical discussion introduced names for the most important constants
and variables. The algorithm uses exactly the same terminology and is presented in
bottom-up form. (If you prefer top-down design, please read the rest of this
section backwards.)

Number representation

A natural number x is represented by an array ofw 1 1 digits in radix b, say,

const b = 1000; w = 100;
type number = array [0..w] of integer;
var x: number;

The algorithm can divide natural numbers with 1 tow digits. During division, the
remainder is extended with an additional position.

Every digit x[k] is an integer in the range

0 # x[k] # b 2 1, for 0 # k # w

The kth digit of x represents the integerx[k] × bk. We will use the wordsleft and
right to refer to the high-order and low-order positions of a number.
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The numberzero is represented by a global variable withw 1 1 zeros:

var zero: number

The length of a natural number is the number of significant digits in the
corresponding array. Algorithm 1 determines the length of a numberx by a linear
search from left to right. The search stops at the first non-zero digit or at the
rightmost digit, whichever is reached first. This variant of linear searching was
derived in Reference11.

function length(x: number)
: integer;

var i, j: integer;
begin

i := w; j := 0;
while i ,. j do

if x[i] ,. 0 then j := i
else i := i 2 1;

length := i 1 1
end

Algorithm 1

Partial arithmetic

The simplest part of multiple-length division is the multiplication or division of a
natural number by a single digit. To avoid confusing thesepartial operations with
complete multiple-length operations, they are calledproduct, quotient, and remainder
(instead of multiply, divide, and modulo; seeTable IV).

Table IV.

Procedure Operation

product(x,y,k) x := y*k
quotient(x,y,k) x := y div k
remainder(x,y,k) x := y mod k

Each operation involves two natural numbersx and y, and a digitk. The procedures
are straightforward implementations of familiar paper-and-pencil methods.

A partial product is computed, digit by digit, from right to left using acarry
(Algorithm 2). If overflow occurs, the execution halts.

procedure product(var x: number;
y: number; k: integer);

var carry, i, m, temp: integer;
begin
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m := length(y);
x := zero; carry := 0;
for i := 0 to m − 1 do

begin
temp := y[i]*k + carry;
x[i] := temp mod b;
carry := temp div b

end;
if m ,= w then x[m] := carry
else if carry ,. 0 then overflow

end

Algorithm 2

The quotient of a partial division is calculated serially from left to right
(Algorithm 3).

procedure quotient(var x: number;
y: number; k: integer);

var carry, i, m, temp: integer;
begin

m := length(y);
x := zero; carry := 0;
for i := m − 1 downto 0 do

begin
temp := carry*b + y[i];
x[i] := temp div k;
carry := temp mod k

end
end

Algorithm 3

The remainderof a partial division is the last carry (compare Algorithms 3 and 4).

procedure remainder(var x: number;
y: number; k: integer);

var carry, i, m: integer;
begin

m := length(y);
x := zero; carry := 0;
for i := m − 1 downto 0 do

carry := (carry*b + y[i]) mod k;
x[0] := carry

end

Algorithm 4

Prefix arithmetic

The computation of a quotient digitq[k] breaks down into simplerprefix operations.
In the following, x[i..j ] denotes digitsi to j of a natural numberx.
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The assignment

qt := trial(r, d, k, m)

defines atrial digit qt = qe, which is an initial estimate ofqk. The operands of the
trial function are prefixes of the remainderr and the divisord:

r{3} = r[k + m..k + m − 2], d{2} = d[m − 1..m − 2]

where

2 # m # k + m # w (24)

The initial estimate is computed as described earlier (Algorithm 5). Strictly
speaking, the trial function should verify that itpreconditionholds. However, since
(24) turns out to be an invariant of long division, this assumption is described by
a comment only.

function trial(r, d: number;
k, m: integer): integer;

var d2, km, r3: integer;
begin

{2 ,= m ,= k+m ,= w}
km := k + m;
r3 := (r[km]*b + r[km − 1])*b

+ r[km − 2];
d2 := d[m −1]*b + d[m −2];
trial := min(r3 div d2, b − 1)

end

Algorithm 5

Two procedures define prefix comparison and subtraction (seeTable V).

Table V.

Procedure Operation

smaller(r, dq, k, m) r{m+1} , dq
difference(r, dq, k, m) r := r − dq * bk

The (m + 1)-place operands are

r{ m + 1} = r[k + m..k], d × qt = dq[m..0]

where

0 # k # k + m # w (25)
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These operations are equivalent to

r , dq × bk, r := r − dq × bk

Since the division invariant (24) implies the precondition (25), these procedures
do not verify this assumption.

The boolean function that determines if the prefixr{ m + 1} is smaller than the
product dq is a variant of thelength function (see Algorithms 1 and 6).

function smaller(r, dq: number;
k, m: integer): boolean;

var i, j: integer;
begin

{0 ,= k ,= k+m ,= w}
i := m; j := 0;
while i ,. j do

if r[i + k] ,. dq[i]
then j := i
else i := i − 1;

smaller := r[i + k] , dq[i]
end

Algorithm 6

The subtraction of the productdq from them+1 high-order digits of the remainder
r proceeds from right to left using aborrow. If the difference is negative, the
execution halts (Algorithm 7).

procedure difference(var r: number;
dq: number; k, m: integer);

var borrow, diff, i: integer;
begin

{0 ,= k ,= k+m ,= w}
borrow := 0;
for i := 0 to m do

begin
diff := r[i + k] − dq[i]

− borrow + b;
r[i + k] := diff mod b;
borrow := 1 − diff div b

end;
if borrow ,. 0 then overflow

end

Algorithm 7
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Division algorithms

Algorithm 8 defineslong division

q := x div y; r := x mod y

of two natural numbers

x[n − 1..0], y[m − 1..0]

where

2 # m # n # w (26)

After normalization of the operands, thequotient qis computed, digit by digit, from
left to right. The quotient iteration maintains the invariant

2 # m # k + m # n # w (27)

The final remainder r is divided by thescaling factor f.

procedure longdivide(x, y: number;
var q, r: number; n, m: integer);

var d, dq: number; f, k, qt: integer;
begin

{2 ,= m ,= n ,= w}
f := b div (y[m − 1] + 1);
product(r, x, f);
product(d, y, f);
q := zero;
for k := n − m downto 0 do

begin
{2 ,= m ,= k+m ,=n ,= w}
qt := trial(r, d, k, m);
product(dq, d, qt);
if smaller(r, dq, k, m) then

begin
qt := qt − 1;
product(dq, d, qt)

end;
q[k] := qt;
difference(r, dq, k, m)

end;
quotient(r, r, f)

end

Algorithm 8

The complete algorithm formultiple-length divisionuses simpler methods for the
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special cases, where thedivisor y has a single-digit only or is longer than the
dividend x (Algorithm 9). In all other cases, the algorithm uses long division after
establishing the precondition (26).

procedure division(x, y: number;
var q, r: number);

var m, n, y1: integer;
begin

m := length(y);
if m = 1 then

begin
y1 := y[m − 1];
if y1 . 0 then

begin
quotient(q, x, y1);
remainder(r, x, y1)

end
else overflow

end
else

begin
n := length(x);
if m . n then

begin
q := zero; r := x

end
else {2 ,= m ,= n ,= w}

longdivide(x, y, q, r, n, m)
end

end

Algorithm 9

Complexity

The complexity of long division is determined by then − m + 1 quotient steps.
Each step is dominated by product and difference operations on (m+1)-place operands.
Consequently, the complexity is

O((n − m + 1) (m + 1))

For random divisors with uniformly distributed lengths between 2 andn, the
average run timeT is close to

T <
1
n En

2

(n − m + 1) (m + 1)-m = O (n2), for n @ 2

Since
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10N < bn, for n < N/log b

a decimal number withN digits corresponds to a radix-b number with N/log b
digits. Consequently;

T < O ( (N/log b)2)

Using radix 1000, instead of ten, reduces the average division time by a factor of
9. Radix 10,000 makes multiple-length division 16 times faster than decimal division.

Radix selection

Algorithms 3 and 4 include integer expressions of the form

db + d

where theds denote arbitrary digits. The corresponding values can be represented
by standard integers if we choose a radixb that satisfies the inequality

db + d # b2 − 1 # maxint

where maxint is the largest standard integer.
For 32-bit integers, this means

b2 # 231

or b # 46,340. A possible choice isb = 10,000.
However, thetrial function (Algorithm 5) has an expression of the form

(db + d) b + d

The corresponding inequality is

(db + d) b + d # b3 − 1 # maxint

For 32-bit integers, we must therefore use a smaller radix, for which

b3 # 231

that is, b # 1290. For example,b = 1000.
If the available computer supports both 32 and 64-bit integers, a radix of 10,000

is feasible if we usedouble-precision arithmeticin the trial function.

FINAL REMARKS

We have developed a Pascal algorithm for long division of natural numbers and
have explained the theory behind the algorithm. This paper is merely an interpretation
and formalization of the original ideas of the authors referenced in the text. It was
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written only because we were unable to find an elegant, complete algorithm described
with convincing clarity in the literature.
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APPENDIX

The appendix summarizes the laws of prefixes and integer division and proves the
theorems about long division.

Prefix laws

By (5), (22):

y{1} bm−1 # y , (y{1} + 1) bm−1 (28)

By (7), (18):

d{1} bm−1 # d , (d{1} + 1) bm−1 (29)

By (7), (14):

d{2} bm−2 # d , (d{2} + 1) bm−2 (30)

By (10), (13):

r{3} bm−2 # r{ m + 1} , (r{3} + 1) bm−2 (31)

Division laws

Any integer divisionq = x div y satisfies three equivalent laws:

x/y − 1 , q # x/y (32)

x , y(q + 1) # x + y (33)

x − y + 1 # yq # x (34)

The following instances of these laws apply to the integer divisions that define
the quotientsf, qe and qk, where

f = b div (y{1} + 1)

qe = min(r{3} div d{2}, b − 1)

qk = r{ m + 1} div d
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By (32):

b/(y{1} + 1) − 1 , f # b/(y{1} + 1) (35)

If qe = r{3} div d{2} then, by (34)

r{3} − d{2} + 1 # d{2} qe # r{3} (36)

By (34):

r{ m + 1} − d + 1 # dqk # r{ m + 1} (37)

By (33):

r{ m + 1} , d(qk + 1) # r{ m + 1} + d (38)

Proof of theorem 1

Theorem: qk # qe

Proof.

1. If qe = r{3} div d{2} then

d(qk − qe) # r{ m + 1} − d{2} qebm−2 by (30), (37)

, ( (r{3} + 1) − (r{3} − d{2} + 1)) bm−2 by (31), (36)

= d{2} bm−2

# d by (30)

Since d . 0, we haveqk − qe , 1, which impliesqk − qe # 0.
2. If qe = b − 1 then

qk # qe, by qk # b − 1

Proof of theorem 2

Theorem: qe # qk + 1

Proof by contradiction. Ifqe $ qk + 2 then

r{ m + 1} , d(qk + 1) by (38)

# d(qe − 1) by qe $ qk + 2

, (d{2} + 1) qebm−2 − d by (30)

# (r{3} + qe)bm−2 − d by (36)

, (r{3} + b)bm−2 − d by qe , b

# r{3} bm−2 by d $ bm−1

# r{ m + 1} by (31)
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that is, r{ m + 1} , r{ m + 1}, a contradiction.

Proof of theorem 3

Theorem: if r{m+ 1} , dqt then qk , qt

Proof.

d(qk − qt) # r{ m + 1} − dqt by (37)

, 0 by r{ m + 1} , dqt

Since d . 0, we haveqk − qt > 0.

Proof of theorem 4

Theorem: if r{m+ 1} $ dqt then qt # qk

Proof by contradiction. Ifqt $ qk + 1 then

r{ m + 1} , d(qk + 1) by (38)

# dqt by qt $ qk + 1

# r{ m + 1} by r{ m + 1} $ dqt

that is, r{ m + 1} , r{ m + 1}, a contradiction.

Proof of theorem 5

Theorem: if qk = qe − 1 then r{m + 1}/d − qk . 1 − 1/d{1}

Proof.

r{ m + 1} − dqk = d + r{ m + 1} − dqe by qk = qe − 1

. d + (r{3} − (d{2} + 1) qe)bm−2 by (30), (31)

$ d − qebm−2 by (36)

. d − bm−1 by qe , b

= d(1 − bm−1/d) by d . 0

$ d(1 − 1/d{1}) by (29)

Consequently,r{ m + 1}/d − qk . 1 − 1/d{1}.
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Proof of theorem 6

Theorem: bm/2 # yf # bm − 1

1. Upper bound.

yf # ( (y{1} + 1) bm−1 − 1)f by (28)

# (y{1} + 1) fbm−1 − 1 by f $ 1

# bm − 1 if f # b/(y{1} + 1)

The largest possible scaling factor is

f = b div (y{1} + 1)

2. Lower bound. If y{1} , b/2 then

y{1} f . y{1} ( b/(y{1} + 1) − 1) by (35)

= (b/2 − y{1} − 1) (y{1} − 1)/(y{1} + 1) + b/2 − 1

$ b/2 − 1 by 1 # y{1} # b/2 −1

Since y{1} f . b/2 −1 and b/2 is an integer, we havey{1} f $ b/2. Consequently,

yf $ y{1} fbm−1 by (28)

$ bm/2 by y{1} f $ b/2

If y{1} $ b/2 then

yf $ y{1} bm−1 by f $ 1, (28)

$ bm/2 by y{1} $ b/2
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