LC (Little Compiler)

Version 0.03

October 9, 2005

Document revision: October 15, 2005

Table of Contents
41.
Goals

42.
The language

4Syntax

53.
System interface

63.1.
Command line argument

63.1.1.
Input

63.2.
Source code input

63.2.1.
Text encoding

63.2.2.
Input

63.3.
Intermediate code file

63.3.1.
Binary encoding

63.3.2.
Input/output

63.4.
Undefined label file

63.4.1.
Binary encoding

63.4.2.
Input/output

63.5.
COFF object file output

63.5.1.
COFF encoding

73.5.2.
Output

73.6.
Assembly language code output

73.6.1.
Text encoding

73.6.2.
Output

73.7.
Listing output

73.7.1.
Text encoding

73.7.2.
Output

74.
Initialization

75.
Lexical analysis

75.1.
Tokens

76.
Syntax analysis

87.
Symbol table

88.
Forward jumps

89.
Code generation

1110.
Startup and system module

1211.
COFF

1211.1.
COFF file header

1211.2.
COFF section headers

1311.3.
COFF data sections

1311.4.
COFF relocation tables

1311.5.
COFF symbol table

1411.6.
COFF string table

1412.
Program header

1413.
Base register for data

1414.
Initialization code

1415.
Error detection

1416.
Bootstrapping new versions

1517.
Exercises

1618.
Other required software

1619.
List of supplied files

Goals

LC branches off from the Bootstrap 2 compiler by adding features for more convenient programming. The ultimate goal is to create a recursive descent compiler and to create a more conventional language using the power of recursive descent parsing.

The other goals of this compiler are simplicity, self-compilation, and binary code generation. Efficiency of the target code is not a goal. Some of the exercises at the end of this document point out various quality issues.

1. The language

LC inherits its initial language from Bootstrap. The Bootstrap language was designed as a prefix language. A prefix language is a fairly easy kind of language to translate.

The syntax is simple enough so that recursion is not necessary to write a syntax-directed compiler for the compiler.

The language models a single accumulator machine, with integer data only. As we are generating code for Win32, the integers are 32-bit.

Syntax

The program can start with

main id

Declare id as main entry procedure

text

Comment to end of line

Data

declare id

Declare id as variable

declare id num
Declare id as array of integers, with index from 0 to num-1

Jumps

procedure id
Declare id as subroutine label

end

End subroutine

;

“No-op” – go to next instruction, use this to improve readability

call id

Call subroutine id

goto id

Go to label id

? id

If accumulator is nonzero, goto label id

: id

Declare id as label, can be subroutine label

return

Return from subroutine

Accumulator operations

$ opd

Load accumulator from operand opd

-> var

Store accumulator in var

+ opd

Add operand opd to accumulator

- opd

Subtract operand opd from accumulator

* opd

Multiply accumulator by operand opd

/ opd

Multiply accumulator by operand opd

& opd

Multiply accumulator by operand opd

| opd

Multiply accumulator by operand opd

< opd

Compare accumulator to operand opd, 1 if accumulator < opd

<= opd

Compare accumulator to operand opd, 1 if accumulator <= opd

= opd

Compare accumulator to operand opd, 1 if accumulator = opd

<> opd

Compare accumulator to operand opd, 1 if accumulator <> opd

> opd

Compare accumulator to operand opd, 1 if accumulator > opd

>= opd

Compare accumulator to operand opd, 1 if accumulator >= opd

Syntax of opd
var

variable or array element

Syntax of var

id

variable id

id1 [id2
array id1 indexed by id2, may optionally be followed by]

Identifiers (id) can only contain lower case letters from a to z and the decimal digits 0 to 9. As with other languages, identifiers must start with a letter. Maximum length of identifiers is 255 characters.

Variables must be defined before they are used. Labels are not restricted this way.

Both decimal and hexadecimal numbers are available. Hexadecimal numbers follow the C convention of prefixing with 0x. Only lower case letters are allowed in hexadecimal numbers.

2. System interface

The system interface is one predefined subroutine and several predefined variables for passing values back and forth.

1) System is the subroutine to call for various system tasks.

2) SysFn specifies which system task to perform.

1) Exit terminates the program. (SysFn = 0)

2) GetCmdLine fills SysArray with command line information. (SysFn = 1)

3) Open opens a file named by SysArray. SysArg1 is 0 for read, otherwise the file is opened for write. If the file can be opened, a file reference is returned in SysArg1. If not, SysArg1 returns a value of –1. (SysFn = 2)

4) Close closes the file referenced by SysArg1. (SysFn = 3)

5) Read reads a byte into SysArg1 from the file referenced by SysArg2. An end-of-file is signaled by returning a value of –1, instead of a byte. (SysFn = 4)

6) Write writes the byte in SysArg1 to the file referenced by SysArg2.
(SysFn = 5)

3) SysArg1 is one of two integer values passed to System. It is sometimes used to return a value.

4) SysArg2 is one of two integer values passed to System.

5) SysArray is used to pass block data to and from System. The array holds 4096 integers. When it holds a string, the string is unpacked – one character per integer.

2.1. Command line argument

2.1.1. Input

Win32 provides a way to get the entire command line.

The command line parser can process quoted arguments.

2.2. Source code input

2.2.1. Text encoding

The source code is assumed to be ASCII. This could be extended to UTF-8, but this version of the compiler is pure ASCII.

2.2.2. Input

The file name is the first argument after the command name on the command line.

2.3. Intermediate code file

2.3.1. Binary encoding

This file holds the almost complete binary encoding of the executable file. Forward jumps have fill bytes (value = 0) in the displacement field.

2.3.2. Input/output

The file name is fixed as $$1.

2.4. Undefined label file

2.4.1. Binary encoding

This file holds forward reference fixup information in binary format. The references are assumed to be jump targets. The fixup information is a pair of numbers, the code offset where the undefined reference is located, and the symbol table entry number of the target label.

2.4.2. Input/output

The file name is fixed as $$2.

2.5. COFF object file output

2.5.1. COFF encoding

This file is the COFF object file. It exports one symbol, _pgm, to let another module know where the generated binary code begins. There are no imports and the code is position-independent, so there is no relocation (fixup) information.

2.5.2. Output

The file name is the second argument after the command name on the command line.

2.6. Assembly language code output

2.6.1. Text encoding

The target is generated in ASCII. This could be extended to UTF-8 if the target assembler can handle it.

2.6.2. Output

The file name is fixed as a.asm.

2.7. Listing output

2.7.1. Text encoding

The listing will be generated in ASCII. This could be extended to UTF-8.

2.7.2. Output

The file name is the third argument after the command name on the command line.

3. Initialization

The compiler starts by generating the predefined names before any source code is analyzed.

4. Lexical analysis

The lexical analyzer has been changed to be independent of character representation. Multicharacter tokens and keywords can now be easily added.

4.1. Tokens

The sequence for tokenizing is to first skip any whitespace characters, and then check the following character for a valid start character. A separate end-of-file token is created when the input file is exhausted. Numbers are scanned and their values are immediately determined. Characters in an identifier are collected into an identifier buffer if they are valid identifier characters.

5. Syntax analysis

Because the CALL and RET instructions of the x86 use a stack, the compiler already supports recursive calls. The problem is that we do not yet have the syntax to provide local stack variables. We can, however, provide a similar capability by coding our own data stacks.

This compiler uses a syntax-directed parsing strategy. Each grammar rule is represented by an executable code sequence.

6. Symbol table

The strings for each identifier is stored in a string pool during lexical analysis. The symbol table proper has an index to the beginning of the identifier string in the string pool. The identifiers are stored as zero-terminated ASCII strings for easy conversion to COFF format. The identifiers are found by linear searching. Overflow checks for the symbol table and the string pool are performed.

After the parsing and code generation have been completed, the stored names are written to the listing output.

7. Forward jumps

A jump to a label that appears later in the program is called a “forward” jump. A call instruction is also a jump. The binary target code is stored in the $$1 file with filler bytes in the displacement field of the forward jump and forward call instructions. The fixup information in stored in the $$2 file. The fixup information is the location of the displacement field and the target label. The file system works great as heap storage for this data. A “second pass” is used to add a header and update the jump displacement fields. The updated code is stored in the bin file.

8. Code generation

The compiler produces two versions of the target file. One version is source code for a MASM 6 compatible assembler. The other version is a COFF object file containing position independent “native” 80386 instructions in “USE32” format.

The code is very simple minded, making it relatively easy to produce a binary executable file. In the assembly language version of the target code, the names have an underscore (_) prepended to prevent conflicts with reserved identifiers in MASM.

main id

Declare procedure id as main entry point

jmp
id

Data

declare id

Declare id as variable

.data

id
dd
?

.code

declare id num

Declare id as array containing num integers

.data

id
dd
num dup(?)

.code

Jumps

procedure id
Declare id as procedure name

id:

end

End procedure

mov
ecx,0

mov
eax,ecx

ret

call id

Call procedure id

call
id

goto id

Go to label id

jmp
id

? id

If accumulator is nonzero, goto label id

test
eax,eax

jnz
id

: id

Declare id as label, can be procedure label

id:

return

Return from procedure

ret

Accumulator operations

$ opd

Load accumulator from operand

load_value

mov
eax,ecx

-> var

Store accumulator in variable

load_address

mov
[ecx],eax

+ opd

Add operand to accumulator

load_value

add
eax,ecx

- opd

Subtract operand from accumulator

load_value

sub
eax,ecx

* opd

Multiply accumulator by operand

load_value

imul
ecx

/ opd

Divide accumulator by operand

load_value

cdq

idiv
ecx

& opd

Bitwise AND operand to accumulator

load_value

and
eax,ecx

| opd

Bitwise OR operand to accumulator

load_value

or

eax,ecx

< opd

Compare accumulator to operand, 1 if accumulator < operand

load_value

cmp
eax,ecx

setl
al

and
eax,1

<= opd

Compare accumulator to operand, 1 if accumulator <= operand

load_value

cmp
eax,ecx

setle
al

and
eax,1

= opd

Compare accumulator to operand, 1 if accumulator = operand

load_value

cmp
eax,ecx

sete
al

and
eax,1

<> opd

Compare accumulator to operand, 1 if accumulator <> operand

load_value

cmp
eax,ecx

setne
al

and
eax,1

> opd

Compare accumulator to operand, 1 if accumulator > operand

load_value

cmp
eax,ecx

setg
al

and
eax,1

>= opd

Compare accumulator to operand, 1 if accumulator >= operand

load_value

cmp
eax,ecx

setge
al

and
eax,1

Operand value (macro for load_value)

num

integer constant

mov
ecx,num

var

variable or array element

load_address

mov
ecx,[ecx]

Variable addressing (macro for load_address)

id

variable id

mov
ecx,offset id

id1 [id2
array id1 indexed by id2

mov
ecx,offset id1

mov
edx,id2

shl
edx,2

add
ecx,edx

9. Startup and system module

The system module provides the startup code and the basic system functions listed above. An invalid value for SysFn is treated as a no-op.

The startup code calls the user program with the following register values:

EAX = address of the System function

ESI = address of the memory allocated using the data area size stored in the header

After the user program returns, the system module will exit to Windows with a system return code of 0.

The user program stores the address of the System function. An indirect jump is used to avoid an external link name. A standard stack frame in a “wrapper” function in the user code allows the support module to be called with either of the two standard calling conventions, stdcall or cdecl. The system support arguments are placed in a structure, and the structure’s address is pushed on the stack as an argument, as per the standard calling conventions. With this setup, almost any compiled language can be used to implement the System function. If need be, the structure can be declared as an integer array in the implementation language.

10. COFF

We can add enough information to produce a COFF object file. This allows us to skip the assembly step and go directly to the link step.

In the following descriptions, the original Unix names for the fields are used.

10.1. COFF file header

The COFF file header appears at the very beginning of the file.

f_magic

0x014C

The magic number for Microsoft and 386 machines

f_nscns

0x0001

We define only 1 section, the code section

f_timdat

0x00000000
Time/date stamp

f_symptr

0xdddddddd
File offset of symbol table

f_nsyms

0x00000001
We are exporting 1 external (public) symbol

f_opthdr

0x0000

Size field, object files don’t need the optional header

f_flags

0x0000

Various flags, apparently the linker doesn’t need these

Most options refer to executable characteristics only

10.2. COFF section headers

The section headers contain information about each section, including their sizes and locations in the COFF file.

s_name
.text

Section name

s_paddr
0x00000000
“Physical” address

s_vaddr
0x00000000
“Virtual” address

s_size
0xdddddddd
Number of bytes

s_scnptr
0xdddddddd
File offset of raw data

s_relptr
0x00000000
File offset of relocation info (none needed)

s_lnnoptr
0x00000000
File offset of line number info (none created)

s_nreloc
0x0000

Number of relocation entries (none)

s_nlnno
0x0000

Number of line numbers (none)

s_flags
0x60300020
Various flags

Flags for s_flags

0x00000020
1
Section contains executable code

0x00000040
0
Section contains initialized data

0x00000080
0
Section contains uninitialized data

0x00100000

1 byte alignment

0x00200000

2 byte alignment

0x00300000
1
4 byte alignment

0x00400000

8 byte alignment

0x00500000

16 byte alignment – default alignment

0x00600000

32 byte alignment

0x00700000

64 byte alignment

0x00800000

128 byte alignment

0x00900000

256 byte alignment

0x00A00000

512 byte alignment

0x00B00000

1024 byte alignment

0x00C00000

2048 byte alignment

0x00D00000

4096 byte alignment

0x00E00000

8192 byte alignment

0x00F00000

-- Not used --

0x20000000
1
Section can be executed

0x40000000
1
Section can be read

0x80000000
0
Section can be written

10.3. COFF data sections

The raw data for each section goes here.

10.4. COFF relocation tables

Our current generated code does not need relocation information.

10.5. COFF symbol table

We export one name to report the location of the start of the code section, which includes the program header.

n_name

_pgm

Symbol name

n_value

0x00000000
Section offset

n_scnum

0x0001

Section number (starts from 1)

n_type

0x0020

Data type = function, type null

n_sclass

0x02

Storage class = external

n_numaux
0x00

Number of auxiliary symbols

10.6. COFF string table

Contains only the size of the string table, as we are not storing long (> 8 chars) names in the COFF file. The size includes the size of the string table size field.

11. Program header

At the beginning of the code section, there are some constants that can help initialize some key values before the user program is started.

· Magic number – a value that can be used as a partial validity check. Currently 0.

· Header size – size of header section that follows the magic number, including this header size field. Executable code follows immediately, so this can be used to skip the header, no matter what size it is.

· Runtime version – specifies the version number of the startup and runtime support module that is needed.

· Code size – size of code section. Can be used to load compiled code from a generic startup program, instead of having it embedded in the EXE file.

· Data size – size of data section. Can be used to allocate data area at run time instead of at link time.

12. Base register for data

Position-independent data is provided by using ESI as a base register for accessing user-defined data. It is the responsibility of the startup code (in a different module) to set this register before the target code is executed.

13. Initialization code

The user program has initialization code that stores the address of the System function.

14. Error detection

If files cannot be opened or if heap allocation fails, the Bootstrap-coded compiler will exit without any messages. Only syntax and name definition errors are reported by the Bootstrap compiler. Undefined goto labels are not reported. They are visible in the symbol table dump with address of ffffffff.

15. Bootstrapping new versions

To begin the bootstrapping process, make copies of the current “released” version of the compiler executable and system support object file, and name them LC0.exe and system0.obj. Make them read-only files.

The first batch file, build1.bat, uses the previous compiler and system support, LC0.exe and system0.obj, to build a compiler, LC1.exe, with new features and a new code generator.

The second batch file, build2.bat, uses LC1.exe and system.asm to build the first self-compiler, LC2.exe, which is supposed to be able to regenerate itself.

The third batch file, build3.bat, uses LC2.exe and system.asm to build another compiler, LC3.exe, as a regeneration test.

Note: Because the PE-COFF header in the EXE file contains a 4-byte timestamp field, two builds will not generate the same EXE files.

It is currently more convenient to compare the ASM files for equality.

When the new version of the compiler has been validated, the new compiler, LC2.exe or LC3.exe, will become the next released compiler, LC.exe.

16. Exercises

Legend:

CF – new code generation features

CG – code generation other than x86 code for the Win32 platforms

CQ – code generation quality

EQ – error handling quality

LF – new language features

PQ – compiler (parser) performance (speed) quality

UQ – usability quality, user interface issues not covered by the other codes

QQ – other quality issues not covered by the other codes

1. [LF] Make hexadecimal constants case insensitive.

2. [LF] Make the language case insensitive.

3. [LF] Allow identifiers to contain the underscore (_) character.

4. [LF] Implement local “stack” variables. Build a recursive descent parser with this improved language.

5. [LF] Implement data types.

6. [UQ] Enforce name usage restrictions: call can only call procedures, goto and ? can only use labels defined by ‘:’, nonconstant operands can only be variables.

7. [UQ] Change the startup interface to get address of data area and System procedure from stacked arguments. The startup code can then be written in C.

8. [QQ] The subroutine finishbin uses some old-fashioned “spaghetti code.” Clean it up.

9. [CQ] Improve indexing to use [ecx+edx*4] addressing mode.

10. [EQ] The compiler has a buffer overflow bug in the identifier routine. File names parsed from the command line are also vulnerable to buffer overflows. Fix them or implement strings.

11. [EQ] Detect undefined labels.

12. [PQ] The compiler is relatively slow. Profile the compiler to find out where most of the time is spent.

13. [PQ] Use “block I/O” or memory-mapped files for faster compiles. Measure the improvement.

14. [PQ] Use a different name search strategy for faster compiles. Examples include hash tables and binary trees. Measure the improvement.

15. [EQ] Implement system error return codes, so that a build can be aborted when using a “make” file.

16. [EQ] Show an error count in the listing.

17. [EQ] Add more error messages
* File error on read/write
* Undefined label

18. [QQ] Create a test suite for triggering error messages.

19. [EQ] Improve the text of the error messages.

20. [EQ] When the symbol table or the name string pool overflows, each new identifier will repeat the overflow error messages. Fix this so that the overflow condition is reported just once.

21. [UQ] Add versioning information to the compiler. Have the compiler output this information to the console, the listing, or both.

22. [UQ] Change the compiler and/or batch files to keep generated files separated from other original files.

23. [LF] Implement a Win32 compatible subroutine protocol, so that you can reduce the amount of support needed.

24. [CF] Directly generate an executable EXE or DLL file.

25. [CF] Generate MSIL for .NET capability.

26. [CF] Generate threaded code, as used in Forth.

27. [CG] Generate code for a virtual machine, as used in Java or some versions of Pascal. (Note: It does not need to be a stack machine.)

28. [CG] Generate code in a tree or linked list, as used in Lisp.

29. [CG] Generate code for a microcontroller or another microprocessor. In other words, create a cross compiler.

30. [CG] Generate self-compiling code for another platform. Mac OS X, Linux, Unix on a non-Intel machine, etc.

17. Other required software

MASM 6

Assembler

Linker – 32 bit (COFF)

Windows API library

18. List of supplied files

LC.doc

This document

ReadMe.txt

Other short notes

LC.txt

Summary of LC syntax

History.txt

Running history of changes

LC.exe

The released compiler

System.asm

Source code of the support module for the released compiler

System.obj

The assembled version of System.asm

LC.L

The compiler source in LC code

Test.L

Test file containing LC features

Test.asm

The result of compiling Test.L

Build1.bat

Batch file for creating new compiler using old compiler

Build2.bat

Batch file for creating new compiler using new compiler

Build3.bat

Batch file for testing regeneration

