

Custom Controls

 PREFACE

More often than not, we use the very same piece of code at many different places of our program. Instead of writing this piece of code as many times as needed, we “pack” it as an individual unit and call it whenever we need. There are cases that we don’t even know this code (if somebody else has written it or if we don’t bother reading it!)

If we write a supplementary program the objective of which is to provide some extra functionality to our main program, and this functionality is probably useful to other programs, then we “pack” it in an individual module and link it to the main program. This individual “packet” is called a Control.

Some very popular Controls used under Windows are “Edit”, “Static”, Common Controls etc

When Object Oriented Programming (OOP) was developed, Visual Basic was the first High level language that used Controls formerly known as OLE Controls. Due to their success, some other high level, object oriented languages developed similar controls which finally named ActiveX Controls.

Windows supports OLE (object-linked-embeded), but a considerable code overhead is needed and only object oriented (OOP) languages can utilize ActiveX controls. Non-OOP languages such as plain C or Assembly can not use them at all. The main disadvantages of ActiveX controls are:

a)A considerable code overhead is needed

b)Rather slow

For these reasons, it is better to develop Controls such as those of Windows. These are rather smaller and of course very much faster.

Controls can be built from scratch such as my GenericGrid and DockWnd controls or use other controls such as ComboBox etc.

Also they can use some other control as a basis and add/modify its fuctionalty, attributes etc. An example is my ComboX control that subclasses the standard ComboBox control.

Follows a detailed description of two Custom Controls:

1.My ComboX that subclasses the standard ComboBox control

2.A custom control built from scratch.

Let’s start examining the Control types. There are two ways to “pack” your custom control code.

1.In a Static Library

2.In a Dynamic Linked Library (DLL)

Both types have their pros and cons. It’s up to you, the Control developer, to choose. Their main difference is the way these are linked to the main program.

1.A Static library is linked during compilation. By this means your control code becomes a part of your main executable (exe) program. This method has two advantages:

a)There is no need to distribute the Control file

b)The user of your main program can neither use your control in other applications nor can he distribute it to others.

On the other hand there are at least three disadvantages:

a)If you modify your control (e.g. add new features, fix bugs etc), you need to recompile ALL your applications that use it.

b)If more that one application use your Control, the code is repeated in all of them thus resulting in more occupied space in your hard disk.

c)Your Control cannot be used by any other Programming Language.

2.A DLL is linked to your main application during execution time.

The disadvantage is that in addition to distributing your application, you have to distribute your DLL as well. The advantages are:

a)If we make any changes to our Control, we only have to redistribute only the DLL and all applications that use it will continue functioning normally.

b)No matter how many applications use your control, only one copy of your control is enough to exist in the hard disk e.g. in the c:\windows\system directory. By this means space is not wasted.

c)Your Control can be used virtually by any Windows programming language and this is by far the biggest advantage.

Both examples I am going to present will be packed as DLL’s.

In order to be able to use a dll, it is necessary to call LoadLibrary (usually at the beginning of the main application. After this, we can create as many Controls as we want. If, for any reason, the DLL fails to load, we better inform the user with an appropriate message and the main application terminates. When our main application is about to terminate, we need to destroy ALL controls we created at the beginning and then call FreeLibrary. When a parent window is being destroyed, all of its children are automatically destroyed by Windows so we call FreeLibrary after our main window is destroyed.

1st example:

One Control, two different approaches.

Because there is not a standard Windows Control with no border (flat), and because a flat Combobox is needed in several programming need (e.g. in a Grid), we are going to build the ComboX control that has both styles. We will achieve this by subclassing the Windows ComboBox Control.

1st approach.

Each and every window of an application belongs to a Class. To define a class you use the WNDCLASSEX structure. One of its members, wc.lpfnWndProc, keeps the address of a procedure, usually called, window procedure. This procedure is called every time the window is receiving messages and thus the code that corresponds to the message received is excecuted.

We can easiliy replace this procedure calling SetWindowLong the parameters of which is the window handle, GWL_WNDPROC, and the address of the new procedure, as it follows:

invoke SetWindowLong,hCombo,GWL_WNDPROC,addr NewWndProc

mov oldProc,eax

The return value of SetWindowLong is the address of the old procedure which we store and use it whenever needed. More specifically, when we need to call the old procedure, we use:

invoke CallWindowProc,oldProc,hwnd,uMsg,wParam,lParam

Usually we call the old procedure from within our NewWndProc so that the old code is executed before the new code does as shown below:

.if eax==WM_LBUTTONDOWN

invoke CallWindowProc,oldProc,hwnd,uMsg,wParam,lParam

invoke GetWindowRect,hWin,addr rcCmb

invoke GetTopWindow,0

invoke SetWindowPos,eax,NULL,rcCmb.left,rcCmb.bottom,\

0,0,SWP_NOSIZE or SWP_NOZORDER

invoke InvalidateRect,hWin,NULL,FALSE

Warning: If we don’t call CallWindowProc when handling a message, means that only our code will be excuted. We do this on purpose whenever we DON’T want the old code to be excuted. In addition, all messages that we don’t want to handle must be passed to the old procedure so that they are executed.

.elseif eax==WM_WINDOWPOSCHANGED

;I don’t want the size to be calculated here

;I calculate it my self.

push edi

ASSUME edi:PTR WINDOWPOS

mov edi,lParam

Invoke GetClientRect,[ebx].hwndEdit,addr rcEdit

Invoke SetWindowPos,[ebx].hwndEdit,NULL,0,0,0,0,\

SWP_NOZORDER or SWP_NOSIZE

mov eax,rcEdit.bottom

sub eax,rcEdit.top

invoke SetWindowPos,hWin,NULL,0,0,[edi].lx,eax,\

SWP_NOZORDER or SWP_NOMOVE

invoke SetRect,addr[ebx].rcBtn,rcEdit.right,rcEdit.top,\

[edi].lx,rcEdit.bottom

invoke InflateRect,addr [ebx].rcBtn,0,1

ASSUME edi:nothing

pop edi

;---

;I don’t want standard painting of the control here

;I paint it the way I want

.elseif eax==WM_PAINT

invoke BeginPaint,hwnd,addr ps

.

invoke EndPaint,hwnd,addr ps

;---

;Here massages that I don’t need are passed to the old procedure.

.else

invoke CallWindowProc,oldProc,hwnd,uMsg,wParam,lParam

ret

.endif

xor eax,eax

finish:

ret

NewWndProc endp
The Windows ComboBox has three different styles:

1.CBS_SIMPLE.

Here, the control is composed of two different controls. One Edit (Class=”Edit”) and one listbox (Class= ComboLBox NOT ListBox) and it is always visible. We don’t care for this style for our tutorial needs.

2.CBS_DROPDOWN.

Here, we have the same constituents, the only difference being the fact that the ListBox is a popup winodow.

3.CBS_DROPDOWNLIST.

Here, the ComboBox is NOT composed of two controls and the user can not edit it. Windows documentation states that it is composed of a static control and a listbox, But I discovered that this is not the case (Windows ME). The arrow button is NOT a window. It is simply painted.

The main window of ComboLBox is flat with a border painted around it and it cannot be removed by changing its style. So, we need to handle WM_PAINT and do the painting ourselves. Also, the hight is automatically calculated by the Font Height. If we change its height, only the height of the listbox changes.

We create and export the CreateComboX procedure. This is the main

procedure of our control.

First of all, we check dwExStyle, If it is WS_EX_CLIENTEDGE we create the standard ComboBox and the function returns.

if (dwExStyle & WS_EX_CLIENTEDGE)

invoke CreateWindowEx,0,lpClassName,\

lpWindowName,dwStyle,x,y,nWidth,nHeight,\

hWndParent,hMenu,hInst,NULL

ret

.endif

If not, we take the pointer of the COMBODATA structure which stores private data of each control. Each control must have its own private data.

ASSUME ebx:PTR COMBODATA

After this, we use the following:

mov eax,dwStyle

and eax,CBS_DROPDOWNLIST

mov oldStyle,eax

to see the style chosen by the user. We store the result for further use.

If CBS_SIMPLE was chosen, we simply create a standard Control and the function returns.

If CBS_ DROPDOWN was chosen, we create a standard control and continue

If CBS_ DROPDOWNLIST was chosen, we zero the first bit so that we end up with CBS_DROPDOWN, create a standard control and continue.

We allocate the proper amount of memory, take the handles of edit and listbox and check the oldstyle. If it is CBS_DROPDOWNLIST ,we subclass the edit control and process WM_CHAR so that the user can not use the edit control.

We could send EM_SETREADONLY instead of subclassing the edit control but it would have a gray color and we don’t want this.

We store the pointer of the COMBODATA structure as follows

invoke SetWindowLong,hCombo,GWL_USERDATA,ebx

It would be much faster if we store it in the wc.cbWndExtra member of the ComboBox class, but it is not important in our case.

We will do this in the next tutorial.

Since the edit control is positioned a bit lower than the main ComboBox window so that some space for the border is left, we will let windows process WM_CREATE so that the control takes its characteristics. Immediately after, we sublclass, and catch WM_WINDOWPOSCHANGED. Also, we subclass the edit control so that we can handle keyboard as shown below:

invoke FindWindowEx,hCombo,NULL,addr szEditClass,NULL

mov hEdit,eax

invoke SetWindowLong,hCombo,GWL_WNDPROC,addr NewWndProc

mov oldProc,eax

invoke SetWindowLong,hEdit,GWL_WNDPROC,addr EditProc

mov oldEditProc,eax

Keyboard handling is meaningful only in the CBS_DROPDOWNLIST style case so that the user cannot use the edit control.

In addition, we use FindWindowEx so that we get the edit control’s handle (child window).

In WM_WINDOWPOSCHANGED we move the edit control to the upper left corner of the main window and then make the main window’s size same with the edit control’s size.

In WM_LBUTTONDOWN we move the listbox upwards as appropriate. In we paint the button the width of which is set to the difference of the main window’s width and the edit control’s width.

We free all allocated memory in WM_DESTROY.

Athens, Jan - 5 – 2004

Manos.

2nd approach.

This has been implemented in cooperation with akyprian, who had the idea.

Here we are taking a completely different approach.The first approach was the classic one used by some high level languages such as Visual Basic. Now, the end result is going to be a flat combo with exactly the same behaviour as the standard ComboBox. A new window with a different class will serve as a host for the standard combo.

The standard combo will still be subclassed just to get the listbox handle in WM_LBUTTONDOWN, so that we change its size and position. No need to subclass the edit control any more. The COMBODATA structure is not needed to store data either because we are only going to need two values. The standard combo handle, which we store in UserData of our new parent window, and oldproc of standard combo which we store in UserData of standard combo. By this means, there is no need to allocate extra memory.

The new parent window will be suitably smaller than the hosted standard combobox control. Also, the standard combo will be moved so that its border lies outside the parent boundaries and hence not painted. No need to handle WM_PAINT any more.

A small problem arises. The standard combo sends and receives messages to and from the parent window. But its parent is not the application’s main window but the new parent (host) window we created.

Not a big deal! We catch all messages (WM_COMMAND & WM_NOTIFY) sent by standard combo to the new parent Window and forward them to the application’s main window.

In addition, we catch all messages sent to the new parent by the application’s main window and forward them to the standard combo. These messages lie from

CB_GETEDITSEL (=140h) to CB_INITSTORAGE(=161h)

Jan - 14 – 2004

Manos - akyprian.

